
求1/(sin^2x+2cos^2x)的不定积分
1个回答
2014-12-08 · 知道合伙人教育行家
关注

展开全部
原式=∫1/(1+(cosx)^2) dx 分子分母同除以(cosx)^2
=∫(secx)^2/((secx)^2+1) dx
=∫1/((secx)^2+1) d (tanx)
=∫1/((tanx)^2+2) d (tanx)
套公式
=1/√2*arctan((tanx)/√2)+C
=∫(secx)^2/((secx)^2+1) dx
=∫1/((secx)^2+1) d (tanx)
=∫1/((tanx)^2+2) d (tanx)
套公式
=1/√2*arctan((tanx)/√2)+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询