用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复的五位数.(1)被4整除;(2)比2103

用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复的五位数.(1)被4整除;(2)比21034大的偶数;(3)左起第二、四位是奇数的偶数.... 用0,1,2,3,4这五个数字,可以组成多少个满足下列条件的没有重复的五位数.(1)被4整除;(2)比21034大的偶数;(3)左起第二、四位是奇数的偶数. 展开
 我来答
佘采绿5G
2014-09-12 · TA获得超过216个赞
知道答主
回答量:130
采纳率:66%
帮助的人:54.3万
展开全部
(1)被4整除的数,其特征应是末两位数是4的倍数,
可分两类:当末两位数是20,40,04时,
其排列数为3A 3 3 =18个,当末两位数是12,24,32时,
其排列数为3?A 2 1 A 2 2 =12个,故满足条件的五位数共有3A 3 3 +3A 2 1 A 2 2 =30个.
(2)法一:可分五类,当末位数是0,而首位数是2时,有A 2 1 A 2 2 +A 2 2 =6个;
当末位数字是0,而首位数字是3或4时,有A 2 1 A 3 3 =12个;
当末位数字是2,而首位数字是3或4时,有A 2 1 A 3 3 =12个;当末位数字是4,
而首位数字是2时,有A 2 2 +A 1 1 =3个;当末位数字是4,而首位数字是3时,有A 3 3 =6个.
故有(A 2 1 A 2 2 +A 2 2 )+A 2 1 A 3 3 +A 2 1 A 3 3 +A 2 2 +A 1 1 +A 3 3 =39个.
法二:不大于21034的偶数可分为三类:万位数字为1的偶数,有A 3 1 A 3 3 =18个;
万位数字为2,而千位数字是0的偶数,有A 2 1 个;还有21034本身.
而由0,1,2,3,4组成的五位偶数有A 4 4 +A 2 1 A 3 3 A 6 3 =60个.
故满足条件的五位偶数共有60-A 3 1 A 3 3 -A 2 1 -1=39个.
(3)法一:可分两类,0是末位数,有A 2 2 A 2 2 =4个,2或4是末位数,
有A 2 2 A 2 1 4个.故共有A 2 2 A 2 2 +A 2 2 A 2 1 =8个.
法二:第二、四位从奇数1,3中取,有A 2 2
首位从2,4中取,有A 2 1 个;余下的排在剩下的两位,有A 2 2 个,
故共有A 2 2 A 2 1 A 2 2 =8个.

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式