(2008?东城区一模)如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1,直线B1C与平面ABC成30°角.(I
(2008?东城区一模)如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1,直线B1C与平面ABC成30°角.(I)求证:平面B1AC⊥平面ABB1A...
(2008?东城区一模)如图,在直三棱柱ABC-A1B1C1中,∠BAC=90°,AB=BB1,直线B1C与平面ABC成30°角.(I)求证:平面B1AC⊥平面ABB1A1;(II)求直线A1C与平面B1AC所成角的正弦值.
展开
1个回答
展开全部
(I)证明:由直三棱柱性质,B1B⊥平面ABC,
∴B1B⊥AC,又BA⊥AC,B1B∩BA=B,
∴AC⊥平面ABB1A1,又AC?平面B1AC,
∴平面B1AC⊥平面ABB1A1.
(II)解:过A1做A1M⊥B1A1,垂足为M,连接CM,
∵平面B1AC⊥平面ABB1A,且平面B1AC∩平面ABB1A1=B1A,
∴A1M⊥平面B1AC.
∴∠A1CM为直线A1C与平面B1AC所成的角,
∵直线B1C与平面ABC成30°角,∴∠B1CB=30°.
设AB=BB1=a,可得B1C=2a,BC=
3 |
2 |
从而A1C=
3 |
| ||
2 |
A1M |
A1C |
| ||
6 |
∴直线A1C与平面B1AC所成角的正弦值为
| ||
6 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询