已知:如图,BD为⊙O的直径,AB=AC,AD交BC与E,AE=2,ED=4。(1)求证:△ABE∽△ADB;(2)求AB的长;

已知:如图,BD为⊙O的直径,AB=AC,AD交BC与E,AE=2,ED=4。(1)求证:△ABE∽△ADB;(2)求AB的长;(3)延长DB到F,使BF=OB,连接FA... 已知:如图,BD为⊙O的直径,AB=AC,AD交BC与E,AE=2,ED=4。(1)求证:△ABE∽△ADB;(2)求AB的长;(3)延长DB到F,使BF=OB,连接FA,试判断直线FA与⊙O的位置关系,并说明理由。 展开
 我来答
消失7e
2014-12-29 · TA获得超过215个赞
知道答主
回答量:121
采纳率:0%
帮助的人:123万
展开全部
解:(1)∵在⊙O中,AB=AC,
(在同圆或等圆中,相等的弦所对的弧相等)
∴∠ABC=∠D(相等的弧所对的圆周角相等)
∵∠BAD=∠BAE
∴△ABE∽△ADB(如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似);
(2)∵△ABE∽△ADB

∵AE=2,ED=4
∴AB=2
(3)直线FA与⊙O相切
证明:连接AO,
∵BD为⊙O的直径,
∴∠BAD=90°(直径所对的圆周角是直角)
∴在Rt△ABD中,AB 2 +AD 2 =BD 2
∴BD=4
∴OB=2
∵BF=OB,AB=2
∴AB=OB=BF
∴∠FAO=90°(如果一个三角形一边上的中线等于这条边的一半,那么这个三角形是直角三角形)
∵OA为半径,
AF为⊙O切线(经过半径的外端并且垂直于这条半径的直线是圆的切线)。

推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式