如图,正方形ABCD中,∠DAC的平分线交DC于点E.若P、Q分别是AD和AE上的动点,则DQ+PQ能取到的最小值为42
如图,正方形ABCD中,∠DAC的平分线交DC于点E.若P、Q分别是AD和AE上的动点,则DQ+PQ能取到的最小值为42时,此正方形的边长为()A.2B.4C.6D.8...
如图,正方形ABCD中,∠DAC的平分线交DC于点E.若P、Q分别是AD和AE上的动点,则DQ+PQ能取到的最小值为42时,此正方形的边长为( )A.2B.4C.6D.8
展开
1个回答
展开全部
解:过D做DF垂直AE,延长交AD于D,
∵DD′⊥AE,
∴∠AFD=∠AFD′,
∵∠DAC的平分线交DC于点E,
∴∠DAE=∠CAE,
在△DAF与△D′AF中,
∵
,
∴△DAF≌△D′AF(ASA),
∴D′是D关于AE的对称点,AD′=AD,
∴D′P′即为DQ+PQ的最小值,
∵四边形ABCD是正方形,
∴∠DAD′=45°,
∴AP′=P′D′=4
,
∴在Rt△AP′D′中,
P′D′2+AP′2=AD′2,AD′2=64,
∴AD′=8.
故选D.
∵DD′⊥AE,
∴∠AFD=∠AFD′,
∵∠DAC的平分线交DC于点E,
∴∠DAE=∠CAE,
在△DAF与△D′AF中,
∵
|
∴△DAF≌△D′AF(ASA),
∴D′是D关于AE的对称点,AD′=AD,
∴D′P′即为DQ+PQ的最小值,
∵四边形ABCD是正方形,
∴∠DAD′=45°,
∴AP′=P′D′=4
2 |
∴在Rt△AP′D′中,
P′D′2+AP′2=AD′2,AD′2=64,
∴AD′=8.
故选D.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询