大一高等数学求原函数问题 5
展开全部
∂Q/∂x = ∂[y/(x+y)^2]/∂x = -2y(x+y)^3,
∂P/∂y = ∂[(x+2y)/(x+y)^2]/∂y
= [2(x+y)^2-2(x+2y)(x+y)]/(x+y)^4 = -2y/(x+y)^3
则 [(x+2y)dx+ydy]/(x+y)^2 是函数 u(x,y) 的全微分,即它存在原函数。
u(x,y) = ∫<x0, x> P(x, y0)dx + ∫<y0, y> Q(x, y)dy,
此时不能取 x0 = y0 = 0, 不妨取 x0 = 1, y0 = 0
u(x,y) = ∫<1, x> (1/x)dx + ∫<0, y> [y/(x+y)^2]dy
= ln|x| + x/(x+y)-1+ln|x+y|-ln|x| = x/(x+y)+ln|x+y|-1 = C1
则原函数是 x/(x+y)+ln|x+y| = C
∂P/∂y = ∂[(x+2y)/(x+y)^2]/∂y
= [2(x+y)^2-2(x+2y)(x+y)]/(x+y)^4 = -2y/(x+y)^3
则 [(x+2y)dx+ydy]/(x+y)^2 是函数 u(x,y) 的全微分,即它存在原函数。
u(x,y) = ∫<x0, x> P(x, y0)dx + ∫<y0, y> Q(x, y)dy,
此时不能取 x0 = y0 = 0, 不妨取 x0 = 1, y0 = 0
u(x,y) = ∫<1, x> (1/x)dx + ∫<0, y> [y/(x+y)^2]dy
= ln|x| + x/(x+y)-1+ln|x+y|-ln|x| = x/(x+y)+ln|x+y|-1 = C1
则原函数是 x/(x+y)+ln|x+y| = C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询