BP神经网络预测,预测结果与样本数据的理解。

朋友让看一个BP神经网络的程序。由样本数据(如图1),数与数之间有空格隔开,共8个样本数据。导入程序进行预测,其中有关BP神经网络的参数设置为(如图2),经过训练后,预测... 朋友让看一个BP神经网络的程序。由样本数据(如图1),数与数之间有空格隔开,共8个样本数据。导入程序进行预测,其中有关BP神经网络的参数设置为(如图2),经过训练后,预测出一个结果数据文件(如图3)。
由于对BP神经网络不是特别熟悉,所以求大神解答一下,这样的预测结果和样本是怎样的对应关系?这样的预测结果代表着什么?
若能解答,万分感谢。
图1
图2
图3
展开
 我来答
meng2235
2015-03-23 · TA获得超过1.4万个赞
知道大有可为答主
回答量:4585
采纳率:74%
帮助的人:3219万
展开全部
输入节点数是3,说明输入向量的行数m=3,你给的样本只有1行,是不是不全?输出节点只有一个,说明每3个输入数据对应一个预测的输出数据。
其实样本数量很少,就不需要训练那么多次了,训练了也白训练。你问“这样的预测结果代表着什么?”,你也没说这些数据在现实中是什么,怎么会知道呢。
更多追问追答
追问
其实这只是一个测试程序。
我要做的其实是关于图像演变的预测,要结合元胞自动机模型来做。所以想在BP神经网络中输入8个值,然后预测出1个值。但是看来很久的神经网络都不是特别明白其中所说的“样本训练“和”各层权值矩阵的生成与调节”这两个环节,总是想的不那么明白。
您能不能简单直白的给我介绍一下BP神经网络算法的实现方法和运行机制?最好是能有关我要做的8个输入、预测1个输出这一问题。万分感谢。
追答
1)正向传播:输入样本->输入层->各隐层(处理)->输出层
注1:若输出层实际输出与期望输出(教师信号)不符,则转入2)(误差反向传播过程)
2)误差反向传播:输出误差(某种形式)->隐层(逐层)->输入层
其主要目的是通过将输出误差反传,将误差分摊给各层所有单元,从而获得各层单元的误差信号,进而修正各单元的权值(其过程,是一个权值调整的过程)。
注2:权值调整的过程,也就是网络的学习训练过程(学习也就是这么的由来,权值调整)。

其实,BP算法就是四个公式,编程的时候套公式就可以,具体的推导过程可以不懂。
输入神经元、输出神经元个数都是可以随意设定的,在编程里也就是数组维数不同而已。
绿知洲
2024-11-13 广告
噪声预测工具是我们上海绿知洲信息科技有限公司开发的一款专业软件,旨在科学评估并预测环境中的噪声水平。该工具结合了先进的声学理论和实际环境数据,能够模拟不同场景下噪声的传播与影响,为用户提供精确的噪声分布图及预测报告。无论是城市规划、交通管理... 点击进入详情页
本回答由绿知洲提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式