牧场上有一片牧场,每天牧草都匀速地生长,这片牧草可供10头牛吃20天,可供15头牛吃10天,那么如

牧场上有一片牧场,每天牧草都匀速地生长,这片牧草可供10头牛吃20天,可供15头牛吃10天,那么如果25头牛来吃可以吃多少天?我们考试题... 牧场上有一片牧场,每天牧草都匀速地生长,这片牧草可供10头牛吃20天,可供15头牛吃10天,那么如果25头牛来吃可以吃多少天?
我们考试题
展开
 我来答
清风明月茶香
2015-07-10 · TA获得超过2.8万个赞
知道大有可为答主
回答量:5906
采纳率:57%
帮助的人:2289万
展开全部
牛顿问题,因由牛顿提出而得名,也有人称这一类问题叫做牛吃草问题。英国著名的物理学家牛顿曾编过这样一道:牧场上有一片青草,每天都生长得一样快。这片青草供给10头牛吃,可以吃22天,或者供给16头牛吃,可以吃10天,如果供给25头牛吃,可以吃多少天?
牛顿问题,称“牛吃草问题”,牛每天吃草,草每天在不断均匀生长。解题环节主要有四步:
1、求出每天长草量;
2、求出牧场原有草量;
3、求出每天实际消耗原有草量( 牛吃的草量-—生长的草量= 消耗原有的草量);
4、最后求出牛可吃的天数。
想:这片草地天天以匀速生长是分析问题的难点。把10头牛22天吃的总量与16头牛10天吃的总量相比较,得到的10×22-16×10=60,是60头牛一天吃的草,平均分到(22-10)天里,便知是5头牛一天吃的草,也就是每天新长出的草。求出了这个条件,把所有头牛分成两部分来研究,用其中一部分吃掉新长出的草,用另外一部分吃掉原有的草,即可求出全部头牛吃的天数。
设一头牛1天吃的草为一份。
那么10头牛22天吃草为1×10×22=220(份),16头牛10天吃草为1×16×10=160(份)
(220-160)÷(22-10)=5(份),说明牧场上一天长出新草5份。
220-5×22=110(份),说明原有老草110份。
综合式:110÷(25-5)=5.5(天),就能算出一共多少天。
如果想求出有多少牛,那么题目一定会告诉你原来的草量,方法就和求草一样。你可以先写出求草的算式,再带入数字。

2题目解法编辑
牛顿问题的解法是这样的:在牧草不生产的条件下,如果12头公牛在四星期内吃掉三又三分之一由格尔(当时牛顿想出问题并解出答案的地方)的牧草,则按比例36头公牛四星期内,或16头公牛九个星期内,或八头公牛18星期内吃掉10由格尔的牧草,由于牧草在生长,所以21头公牛9星期只吃掉10由格尔牧草,即在随后的五周内,在10由格尔的草地上新长的牧草足够21-16=5头公牛吃9星期,或足够5/2头公牛吃18个星期,由此推得,14个星期(即18个星期减去初的四个星期)内新长的牧草可供7头公牛吃18个星期,因为5:14=5/2:7。前已算出,如牧草不长,则10由格尔草地牧草可供8头公牛吃18个星期,现考虑牧草生长,故应加上7头,即10由格尔草地的牧草实际可供15头公牛吃18个星期,由此按比例可算出。24由格尔草地的牧草实际可供36头公牛吃18星期。
牛顿还给出代数解法:他设格尔草地一个星期内新长出的牧草相当于面积为y由格尔的草地,又每头公牛每个星期所吃牧草所占的面积是相等的。根据题意,设若所求的公牛头数为x,
就为(10/3+10/3*4y)/(12*4)=(10+10*9y)/(21*9)=(24+24*18y)/18x
解得x=36 即36条公牛在18个星期内吃掉24由格尔的牧草。
还有一种方法就是使用方程式的解法。
例如有一块牧场,可供9头牛吃3天,或者5头牛吃6天,请问多少牛能够2天吃完?
我们做方程式:设牧场原有草量为y,每天新增加的牧草可供x头牛食用,N头牛能够2天将草吃完,根据题目条件,我们列出方程式:
y=(9-x)×3
y=(5-x) ×6
y=(N-x) ×2
解方程组得x=1 y=24 N=13
其实这种牛吃草问题的核心公式是:原有草量=(牛数-单位时间长草量可供应的牛的数量)×天数
另一解法:
牛吃草问题的关键点在于这个问题隐藏了一个基本的平衡在其中,那就是:假若每头牛每天的吃草速率和吃草量都不相同,那么此题无解,为什么?因为很可能一头牛心情好一天就能吃完这些草,也可能10头牛食欲不佳一个月吃都不完这些草,因此每头牛每天的吃草速率和数量必须都是相同的是这个问题成立并且能够得到答案的充要条件。
得到这个结论后,我们就要开始确定一个平衡的方程式出来,如何确定?不难想到,可以是吃草量和草本身量之间的平衡,也就是吃草量=草总量。于是我们就可以假设一头牛一天的吃草量为1个单位,并假设第三种情况牛吃草的天数为N;接下来开始寻找平衡方程,我们可以看到,在问题提供的条件中,第一种情况的草的总量为10×22,第二种情况的草的总量为16×10,第三种情况的草的总量为25×N。
然后我们开始寻找方程的平衡:既然我们现在已经找到三种情况里草地的总量,那么不难想到方程的另一边就要靠草的量来进行平衡,于是,我们假设原有草量为Y,草每天的生长量为X,得到如下方程组:
10×22=22X+Y
16×10=10X+Y
25×N=NX+Y
解此方程组,可得X=5,Y=110,N=5.5,因此25头牛用五天半的时间就能吃完这些草。

3规律总结编辑
牛顿问题的难点在于草每天都在不断生长,草的数量都在不断变化。解答这类题目的关键是想办法从变化中找出不变量,我们可以把总草量看成两部分的和,即原有的草量加新长的草量。显而易见,原有的草量是一定的,新长的草量虽然在变,但如果是匀速生长,我们也能找到另一个不变量——每天(每周)新长出的草的数量。
基本思路:假设每头牛吃草的速度为“1”份,根据两次不同的吃法,求出其中的总草量的差;再找出造成这种差异的原因,即可确定草的生长速度和总草量。
  基本特点:原草量和新草生长速度是不变的;
  关键问题:确定两个不变的量。
  基本公式:
  生长量=(较长时间×长时间牛头数-较短时间×短时间牛头数)÷(长时间-短时间);
  原有草量=较长时间×长时间牛头数-较长时间×生长量;
  牛吃草问题常用到四个基本公式:
  牛吃草问题又称为消长问题,是17世纪英国伟大的科学家牛顿提出来的。典型牛吃草问题的条件是假设草的生长速度固定不变,不同头数的牛吃光同一片草地所需的天数各不相同,求若干头牛吃这片草地可以吃多少天。由于吃的天数不同,草又是天天在生长的,所以草的存量随着吃的天数不断地变化。解决牛吃草问题常用到四个基本公式,分别是︰
  (1)草的生长速度= (对应的牛头数×吃的较多天数-相应的牛头数×吃的较少天数)÷(吃的较多天数-吃的较少天数);
  (2)原有草量=牛头数×吃的天数-草的生长速度×吃的天数;`
  (3)吃的天数=原有草量÷(牛头数-草的生长速度);
  (4)牛头数=原有草量÷吃的天数+草的生长速度。
  这四个公式是解决消长问题的基础。
  由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。正是由于这个不变量,才能够导出上面的四个基本公式。
这是复制的!希望你能用自己的智慧解出来!
超级晶果
2015-07-11 · TA获得超过1.4万个赞
知道小有建树答主
回答量:797
采纳率:66%
帮助的人:228万
展开全部
由于牛在吃草的过程中,草是不断生长的,所以解决消长问题的重点是要想办法从变化中找到不变量。牧场上原有的草是不变的,新长的草虽然在变化,但由于是匀速生长,所以每天新长出的草量应该是不变的。正是由于这个不变量,才能够导出上面的四个基本公式。

  牛吃草问题经常给出不同头数的牛吃同一片次的草,这块地既有原有的草,又有每天新长出的草。由于吃草的牛头数不同,求若干头牛吃的这片地的草可以吃多少天。

  解题关键是弄清楚已知条件,进行对比分析,从而求出每日新长草的数量,再求出草地里原有草的数量,进而解答题总所求的问题。

  这类问题的基本数量关系是:

  1.(牛的头数×吃草较多的天数-牛头数×吃草较少的天数)÷(吃的较多的天数-吃的较少的天数)=草地每天新长草的量。

  2.牛的头数×吃草天数-每天新长量×吃草天数=草地原有的草。

摘录条件:

  10头 20天 原有草+20天生长草

  15头 10天 原有草+10天生长草

  25头 ?天 原有草+?天生长草

  小学解答:解答这类问题关键是要抓住牧场青草总量的变化。设1头牛1天吃的草为"1",由条件可知,前后两次青草的问题相差为10×20-15×10=50。为什么会多出这50呢?这是第二次比第一次多的那(20-10)=10天生长出来的,所以每天生长的青草为50÷10=5
  现从另一个角度去理解,这个牧场每天生长的青草正好可以满足5头牛吃。由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?

  (10-5)*20=100

  那么:第一次吃草量20×10=200,第二次吃草量,15×10=150
  每天生长草量50÷10=5
  原有草量(10-5)×20=100或200-5×20=100
  25头牛分两组,5头去吃生长的草,其余20头去吃原有的草那么100÷20=5(天)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
丝域shine
2015-07-10 · 知道合伙人教育行家
丝域shine
知道合伙人教育行家
采纳数:1153 获赞数:10490
即将毕业

向TA提问 私信TA
展开全部
1、供给10头牛可吃20天;供给15头牛吃,可以吃10天:
设每头牛每天吃草为X,草每天生长速度为Y:
10X * 20 = 15X * 10 + 10Y
5X = Y
即每天生长的新草可供5头牛吃1天。
2、设25头牛可吃A天:
10X * 20 = A * 25X +(20 - A )Y
200X = 25A * X +(20 - A)* 5X
100X = 20A * X
A = 5(天)
25头牛,可吃5天。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
化晔0G5
2019-02-10 · TA获得超过1116个赞
知道答主
回答量:77
采纳率:0%
帮助的人:5.9万
展开全部
假设每头牛每天吃草量为1份。那么:
这片牧场每天新长出草量:
(10×20-15×10)÷(20-10)=5(份)
这片草场原有的草量:
(15-5)×10=100(份)
25头牛可以吃:
100÷(25-5)=5(天)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
星星金珠
2015-07-10 · TA获得超过1173个赞
知道小有建树答主
回答量:741
采纳率:0%
帮助的人:209万
展开全部
10x20=200,15x10=150,200一150=50,20一10=10,50÷10=5。5X20=100,200一100=100,25一5=20,100÷20=5天
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(7)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式