离散数学 2.18 第二问怎么证明? 40

 我来答
zzllrr小乐
高粉答主

2015-10-16 · 小乐数学,小乐阅读,小乐图客等软件原作者,“zzllrr小乐...
zzllrr小乐
采纳数:20147 获赞数:78793

向TA提问 私信TA
展开全部
只需证明这个式子是永真蕴含式即可:
((¬p∨q)∧(q→r))→(¬p∨r)
⇔¬((¬p∨q)∧(q→r))∨(¬p∨r) 变成 合取析取
⇔¬((¬p∨q)∧(¬q∨r))∨(¬p∨r) 变成 合取析取
⇔(¬(¬p∨q)∨¬(¬q∨r))∨(¬p∨r) 德摩根定律
⇔((p∧¬q)∨(q∧¬r))∨(¬p∨r) 德摩根定律
⇔(p∧¬q)∨(q∧¬r)∨¬p∨r 结合律
⇔¬q∨(q∧¬r)∨¬p∨r 合取析取 吸收率
⇔¬q∨¬r∨¬p∨r 合取析取 吸收率
⇔¬p∨¬q∨¬r∨r 交换律 排序
⇔TRUE
涂泽语0hdc3d
2015-10-15
知道答主
回答量:53
采纳率:0%
帮助的人:11.8万
展开全部
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式