已知双曲线x2-y2=2的右焦点为F,过点F的动直线与双曲线相交于A,B,点C的坐标是(1,0)。证明向量CA*向量C

求过程那是证明向量CA乘向量CB为常数... 求过程那
是证明向量CA 乘 向量CB为常数
展开
luxiao1990
2010-08-17 · TA获得超过179个赞
知道小有建树答主
回答量:172
采纳率:0%
帮助的人:130万
展开全部
就是用韦达定理(根与系数的关系)嘛。
首先设A坐标(x1,y1) B坐标(x2,y2)
易知向量CA与向量CB的点积(或内积,数量积)为x1*x2-(x1+x2)+y1*y2+1
所以就有了下面的步骤:
易知过焦点F(2,0)的直线方程可表示为y=k*(x-2) (k不等于0,k=无穷大的情况要另外考虑,这个情况很简单,A,B点x坐标相同,y坐标值互为相反数,算一下就OK了,我就不再叙述了)
与双曲线的方程联立得到方程组;
然后消去y得
(1-k^2)*x^2+4*k^2*x-(4*k^2+2)=0
易知x1,x2为这个方程的解,那么
由韦达定理知
x1*x2=-(4*k^2+2)/(1-k^2)
x1+x2=-4*k^2/(1-k^2)
y1*y2可由y=k*(x-2)代换后得到k^2*(x1-2)*(x2-2)即k^2*(x1*x2-2*(x1+x2)+4)
剩下的就是把这些代进去算了,不难。
我算的是最后的常数为(k^2-1)/(1-k^2)=-1
不过最后还要再考虑k=+1和-1,说明一下
当k=+1和-1时直线和渐近线平行了,所以与双曲线只有一个交点,所以k的取值范围为k>1且k<-1。
那么剩下的就是考虑k=无穷大的情况,此时
x1=x2=2;
y1=-y2=根号2
计算得向量乘积为-1

总结:这道题不难,就是算起来要稍麻烦些,用到的东西就那么多,只要肯算就没问题。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式