高等数学 极限 画横线的两步怎样理解
1个回答
展开全部
令 h(x) = (1/2) * [ f(x) + g(x) + / f(x) - g(x) / ]
1 ) f(x) ≥ g(x) 时,
h(x) = (1/2) * [ f(x) + g(x) + / f(x) - g(x) / ]
= (1/2) * [ f(x) + g(x) + ( f(x) - g(x) )]
= f(x)
2 ) f(x) ≤ g(x) 时,
h(x) = (1/2) * [ f(x) + g(x) + / f(x) - g(x) / ]
= (1/2) * [ f(x) + g(x) -( f(x) - g(x) )]
= g(x)
故 max { f(x), g(x) } = h(x) = (1/2) * [ f(x) + g(x) + / f(x) - g(x) / ]
1 ) f(x) ≥ g(x) 时,
h(x) = (1/2) * [ f(x) + g(x) + / f(x) - g(x) / ]
= (1/2) * [ f(x) + g(x) + ( f(x) - g(x) )]
= f(x)
2 ) f(x) ≤ g(x) 时,
h(x) = (1/2) * [ f(x) + g(x) + / f(x) - g(x) / ]
= (1/2) * [ f(x) + g(x) -( f(x) - g(x) )]
= g(x)
故 max { f(x), g(x) } = h(x) = (1/2) * [ f(x) + g(x) + / f(x) - g(x) / ]
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询