
已知向量a=(sinθ,1),b=(1,cosθ),-π/2<θ<π/2 (1)若a⊥b,求θ (2)求| a+b|的最大值
1个回答
展开全部
a⊥b =>
a • b = (sinθ) * 1 + 1 * sinθ =0
=>
sinθ = cosθ
又 -π/2<θ<π/2
=>
θ=π/4
=>
a+b= ( sin(π/4) +1 , 1+cos(π/4))
|a+b|= √{[sin(π/4)+1]^2 + [1+cos(π/4)]^2}
= 1+√2
a • b = (sinθ) * 1 + 1 * sinθ =0
=>
sinθ = cosθ
又 -π/2<θ<π/2
=>
θ=π/4
=>
a+b= ( sin(π/4) +1 , 1+cos(π/4))
|a+b|= √{[sin(π/4)+1]^2 + [1+cos(π/4)]^2}
= 1+√2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询