用配方法化二次型为标准型怎么作线性变换

 我来答
zzllrr小乐
高粉答主

推荐于2017-12-16 · 小乐数学,小乐阅读,小乐图客等软件原作者,“zzllrr小乐...
zzllrr小乐
采纳数:20147 获赞数:78798

向TA提问 私信TA
展开全部
  1. 先将二次型配方,然后化简(合并同类项)

  2. 使用变量替换,将向量x替换为向量y

  3. 根据向量y与x之间的关系,写成变换矩阵

  4. 具体,可参看下列例子:

112hm
高粉答主

推荐于2019-10-03 · 每个回答都超有意思的
知道小有建树答主
回答量:911
采纳率:0%
帮助的人:34.6万
展开全部

1、先将二次型配方,然后化简(合并同类项)。

2、使用变量替换,将向量x替换为向量y。

3、根据向量y与x之间的关系,写成变换矩阵。

4、具体,可参看下列例子:

扩展资料:

线性变换的性质:

线性空间V上的一个变换A称为线性变换,对于V中任意的元素α,β和数域P中任意k,都有

A(α+β)=A(α)+A(β)

A (kα)=kA(α)

线性变换是线性代数研究的一个对象,即向量空间到自身的保运算的映射。例如,对任意线性空间V,位似是V上的线性变换,平移则不是V上的线性变换。

对线性变换的讨论可借助矩阵实现。σ关于不同基的矩阵是相似的。Kerσ={a∈V|σ(a)=θ}(式中θ指零向量)称为σ的核,Imσ={σ(a)|a∈V}称为σ的象,是刻画σ的两个重要概念。

对于欧几里得空间,若σ关于标准正交基的矩阵是正交(对称)矩阵,则称σ为正交(对称)变换。正交变换具有保内积、保长、保角等性质,对称变换具有性质:〈σ(a),β〉=〈a,σ(β)〉。

在数学中,线性映射(也叫做线性变换或线性算子)是在两个向量空间之间的函数,它保持向量加法和标量乘法的运算。术语“线性变换”特别常用,尤其是对从向量空间到自身的线性映射(自同态)。

在抽象代数中,线性映射是向量空间的同态,或在给定的域上的向量空间所构成的范畴中的态射。

特征:

(1)设A是V的线性变换,则A(0)=0,A(-α)=-A(α); 

(2)线性变换保持线性组合与线性关系式不变;

(3)线性变换把线性相关的向量组变成线性相关的向量组。

注意:线性变换可能把线性无关的向量组变成线性相关的向量组。

参考资料来源:百度百科--配方法

参考资料来源:百度百科--线性变换

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式