初二数学答案6 7 题
2个回答
展开全部
6.证明:过M点作MN⊥AD于N
∵DM平分∠ADC,∠C=90°,MN⊥AD于N
∴∠MND=∠ANM=90°
在RT△DMN和RT△DMC中
DM =DM
DN=DC
∴RT△DMN≌RT△DMC(HL)
∴MN=MC
又∵M是BC中点
∴MB=MC
∴MN=MB
∴AM平分∠DAB(在角内部,到角两边距离相等的点在角平分线上)
7 证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC
∴DE=DF, ∠AED=∠AFD=90° ∠DAE=∠DAF
即∠AEM+∠DEM=∠AFM+∠DFM
∠DEM=∠DFM(等边对等角)
∴∠AEM=∠AFM
在△AEM和△AFM中
∠AEM=∠AFM
∠DAE=∠DAF
AM=MA
∴△AEM≌△AFM(AAS)
∴∠AME=∠AMF ,ME=MF
∴AD垂直且平分EF
∵DM平分∠ADC,∠C=90°,MN⊥AD于N
∴∠MND=∠ANM=90°
在RT△DMN和RT△DMC中
DM =DM
DN=DC
∴RT△DMN≌RT△DMC(HL)
∴MN=MC
又∵M是BC中点
∴MB=MC
∴MN=MB
∴AM平分∠DAB(在角内部,到角两边距离相等的点在角平分线上)
7 证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC
∴DE=DF, ∠AED=∠AFD=90° ∠DAE=∠DAF
即∠AEM+∠DEM=∠AFM+∠DFM
∠DEM=∠DFM(等边对等角)
∴∠AEM=∠AFM
在△AEM和△AFM中
∠AEM=∠AFM
∠DAE=∠DAF
AM=MA
∴△AEM≌△AFM(AAS)
∴∠AME=∠AMF ,ME=MF
∴AD垂直且平分EF
2014-01-19
展开全部
6、∵∠B=∠C=90°
∴AB∥CD
过M作ME∥AB∥CD交AD于点E
则有∠CDM=∠EMD,∠EMA=∠BAM
∵DM平分∠ADC
∴∠CDM=∠EDM
∴∠EMD=∠EDM
∴ED=EM
∵M是BC中点,ME∥AB∥BC
∴E是AD中点,AE=DE
∴AE=EM
∴∠EAM=∠EMA=∠BAM
∴AM平分∠DAB
(记得做辅助线)
7、(自己画图)
∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC
∴∠BAD=∠CAD,DE=DF,∠AED=∠AFD=90°
又∵AD=AD
∴⊿AED≌⊿AFD(HL)
∴∠ADE=∠ADF
又∵DE=DF,DM=DM
∴⊿DEM≌⊿DFM(SAS)
∴EM=FM,∠DME=∠DMF=90°
∴AD⊥EF,AD平分EF
∴AB∥CD
过M作ME∥AB∥CD交AD于点E
则有∠CDM=∠EMD,∠EMA=∠BAM
∵DM平分∠ADC
∴∠CDM=∠EDM
∴∠EMD=∠EDM
∴ED=EM
∵M是BC中点,ME∥AB∥BC
∴E是AD中点,AE=DE
∴AE=EM
∴∠EAM=∠EMA=∠BAM
∴AM平分∠DAB
(记得做辅助线)
7、(自己画图)
∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC
∴∠BAD=∠CAD,DE=DF,∠AED=∠AFD=90°
又∵AD=AD
∴⊿AED≌⊿AFD(HL)
∴∠ADE=∠ADF
又∵DE=DF,DM=DM
∴⊿DEM≌⊿DFM(SAS)
∴EM=FM,∠DME=∠DMF=90°
∴AD⊥EF,AD平分EF
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询