初二数学答案6 7 题

温雨华2
2014-01-24 · 超过32用户采纳过TA的回答
知道答主
回答量:125
采纳率:0%
帮助的人:77.3万
展开全部
6.证明:过M点作MN⊥AD于N
∵DM平分∠ADC,∠C=90°,MN⊥AD于N
∴∠MND=∠ANM=90°
在RT△DMN和RT△DMC中
DM =DM
DN=DC
∴RT△DMN≌RT△DMC(HL)
∴MN=MC
又∵M是BC中点
∴MB=MC
∴MN=MB
∴AM平分∠DAB(在角内部,到角两边距离相等的点在角平分线上)
7 证明:∵AD平分∠BAC,DE⊥AB,DF⊥AC
∴DE=DF, ∠AED=∠AFD=90° ∠DAE=∠DAF
即∠AEM+∠DEM=∠AFM+∠DFM
∠DEM=∠DFM(等边对等角)
∴∠AEM=∠AFM
在△AEM和△AFM中
∠AEM=∠AFM
∠DAE=∠DAF
AM=MA
∴△AEM≌△AFM(AAS)
∴∠AME=∠AMF ,ME=MF
∴AD垂直且平分EF
匿名用户
2014-01-19
展开全部
6、∵∠B=∠C=90°
∴AB∥CD
过M作ME∥AB∥CD交AD于点E
则有∠CDM=∠EMD,∠EMA=∠BAM
∵DM平分∠ADC
∴∠CDM=∠EDM
∴∠EMD=∠EDM
∴ED=EM
∵M是BC中点,ME∥AB∥BC
∴E是AD中点,AE=DE
∴AE=EM
∴∠EAM=∠EMA=∠BAM
∴AM平分∠DAB
(记得做辅助线)
7、(自己画图)
∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC
∴∠BAD=∠CAD,DE=DF,∠AED=∠AFD=90°
又∵AD=AD
∴⊿AED≌⊿AFD(HL)
∴∠ADE=∠ADF
又∵DE=DF,DM=DM
∴⊿DEM≌⊿DFM(SAS)
∴EM=FM,∠DME=∠DMF=90°
∴AD⊥EF,AD平分EF
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式