一道初三的数学题~
(08中山)(本题满分9分)(1)如图7,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结...
(08中山)(本题满分9分)(1)如图7,点O是线段AD的中点,分别以AO和DO为边在线段AD的同侧作等边三角形OAB和等边三角形OCD,连结AC和BD,相交于点E,连结BC.
求∠AEB的大小;
(2)如图8,ΔOAB固定不动,保持ΔOCD的形状和大小不变,将ΔOCD绕着点O旋转(ΔOAB和ΔOCD不能重叠),求∠AEB的大小.
21.解:(1)如图7.
∵ △BOC和△ABO都是等边三角形,
且点O是线段AD的中点,
∴ OD=OC=OB=OA,∠1=∠2=60°, ……1分
∴ ∠4=∠5.
又∵∠4+∠5=∠2=60°,
∴ ∠4=30°.…………………………2分
同理,∠6=30°.…………………………3分
∵ ∠AEB=∠4+∠6,
∴ ∠AEB=60°.………………………4分
(2)如图8.
∵ △BOC和△ABO都是等边三角形,
∴ OD=OC, OB=OA,∠1=∠2=60°,………5分
又∵OD=OA,
∴ OD=OB,OA=OC,
∴ ∠4=∠5,∠6=∠7. …………………6分
∵ ∠DOB=∠1+∠3,
∠AOC=∠2+∠3,
∴∠DOB=∠AOC. …………………………………7分
∵ ∠4+∠5+∠DOB=180°, ∠6+∠7+∠AOC=180°,
∴ 2∠5=2∠6,
∴ ∠5=∠6.………………………………………………8分
又∵ ∠AEB=∠8-∠5, ∠8=∠2+∠6,
∴ ∠AEB=∠2+∠5-∠5=∠2,
∴ ∠AEB=60°.…………………………………………9分
搜到答案了,可是与图对应不上。
请大家对应一下,谢谢>0< 展开
求∠AEB的大小;
(2)如图8,ΔOAB固定不动,保持ΔOCD的形状和大小不变,将ΔOCD绕着点O旋转(ΔOAB和ΔOCD不能重叠),求∠AEB的大小.
21.解:(1)如图7.
∵ △BOC和△ABO都是等边三角形,
且点O是线段AD的中点,
∴ OD=OC=OB=OA,∠1=∠2=60°, ……1分
∴ ∠4=∠5.
又∵∠4+∠5=∠2=60°,
∴ ∠4=30°.…………………………2分
同理,∠6=30°.…………………………3分
∵ ∠AEB=∠4+∠6,
∴ ∠AEB=60°.………………………4分
(2)如图8.
∵ △BOC和△ABO都是等边三角形,
∴ OD=OC, OB=OA,∠1=∠2=60°,………5分
又∵OD=OA,
∴ OD=OB,OA=OC,
∴ ∠4=∠5,∠6=∠7. …………………6分
∵ ∠DOB=∠1+∠3,
∠AOC=∠2+∠3,
∴∠DOB=∠AOC. …………………………………7分
∵ ∠4+∠5+∠DOB=180°, ∠6+∠7+∠AOC=180°,
∴ 2∠5=2∠6,
∴ ∠5=∠6.………………………………………………8分
又∵ ∠AEB=∠8-∠5, ∠8=∠2+∠6,
∴ ∠AEB=∠2+∠5-∠5=∠2,
∴ ∠AEB=60°.…………………………………………9分
搜到答案了,可是与图对应不上。
请大家对应一下,谢谢>0< 展开
2个回答
展开全部
21.解:(1)如图7.
∵ △BOC和△ABO都是等边三角形,
且点O是线段AD的中点,
∴ OD=OC=OB=OA,∠1=∠2=60°,
∴ ∠4=∠5.
又∵∠4+∠5=∠2=60°,
∴ ∠4=30°.
同理,∠6=30°.
∵ ∠AEB=∠4+∠6,
∴ ∠AEB=60°
(2)如图8.
∵ △BOC和△ABO都是等边三角形,
∴ OD=OC, OB=OA,∠1=∠2=60°,
又∵OD=OA,
∴ OD=OB,OA=OC,
∴ ∠4=∠5,∠6=∠7.
∵ ∠DOB=∠1+∠3,
∠AOC=∠2+∠3,
∴∠DOB=∠AOC.
∵ ∠4+∠5+∠DOB=180°, ∠6+∠7+∠AOC=180°,
∴ 2∠5=2∠6,
∴ ∠5=∠6.
又∵ ∠AEB=∠8-∠5, ∠8=∠2+∠6,
∴ ∠AEB=∠2+∠5-∠5=∠2,
∴ ∠AEB=60°.
给你发图就能对上号了。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询