1个回答
展开全部
用{表示积分号,
令(x^2+1)/[(1+x)^2*(x-1)=(ax+b)/(x+1)^2+C/(x-1),
可以解出
a=1/2,b=-1/2,C=1/2
原积分可以化为1/2*{(x-1)/(x+1)^2dx+1/2*{1/(x-1)d(x-1)
=1/4*{(2x+2-4)/(x+1)^2dx+1/2*ln绝对值(x-1)
=1/2*ln绝对值(x-1)+1/4{1/(x^2+2x+1)d(x^2+2x+1)-{1/(x+1)^2dx
=1/2*ln绝对值(x-1)+1/4*ln(x^2+2x+1)-1/(-2+1)*(x+1)^(-2+1)+C
=1/2*ln绝对值(x-1)+1/4*ln(x^2+2x+1)+1/(x+1)+C
令(x^2+1)/[(1+x)^2*(x-1)=(ax+b)/(x+1)^2+C/(x-1),
可以解出
a=1/2,b=-1/2,C=1/2
原积分可以化为1/2*{(x-1)/(x+1)^2dx+1/2*{1/(x-1)d(x-1)
=1/4*{(2x+2-4)/(x+1)^2dx+1/2*ln绝对值(x-1)
=1/2*ln绝对值(x-1)+1/4{1/(x^2+2x+1)d(x^2+2x+1)-{1/(x+1)^2dx
=1/2*ln绝对值(x-1)+1/4*ln(x^2+2x+1)-1/(-2+1)*(x+1)^(-2+1)+C
=1/2*ln绝对值(x-1)+1/4*ln(x^2+2x+1)+1/(x+1)+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询