已知函数f(x)=cos(2x+π/3)+sin²x-cos²x+2√3sinxcosx求函数f(x)的单调递减区间

已知函数f(x)=cos(2x+π/3)+sin²x-cos²x+2√3sinxcosx1.求函数f(x)的单调递减区间2.若x∈[0,π/2],求f... 已知函数f(x)=cos(2x+π/3)+sin²x-cos²x+2√3sinxcosx
1.求函数f(x)的单调递减区间
2.若x∈[0,π/2],求f(x)的最值
3.若f(α)=1/7,2α是第一象限角,求sin2α的值
展开
 我来答
wjl371116
2017-01-06 · 知道合伙人教育行家
wjl371116
知道合伙人教育行家
采纳数:15457 获赞数:67440

向TA提问 私信TA
展开全部
f(x)=cos(2x+π/3)-cos2x+(√3)sin2x
=cos(2x+π/3)-2[(1/2)cos2x-(√3/2)sin2x]
=cos(2x+π/3)-2[cos2xcos(π/3)-sin2xsin(π/3)]
=cos(2x+π/3)-2cos(2x+π/3)=-cos(2x+π/3)
①.单调区间:
由 2kπ≤2x+π/3≤2kπ+π,得单增区间为:[kπ-π/6,kπ+π/3];
由 2kπ-π≤2x+π/3≤2kπ,得单减区间为:[kπ-2π/3,kπ-π/6];
②.在x∈[0,π/2]内,minf(x)=f(0)=-cos(π/3)=-1/2;
maxf(x)=f(π/3)=-cos(2π/3+π/3)=-cosπ=1.
③. f(α)=-cos(2α+π/3)=1/7
cos(2α+π/3)=-1/7; 2α∈第一象限,∴(2α+π/3)∈第二象限。
2α+π/3=arccos(-1/7)=π-arccos(1/7)
2α=(2π/3)-arccos(1/7)
∴sin2α=sin[(2π/3)-arccos(1/7)]=sin(2π/3)(1/7)-cos(2π/3)√(1-1/49)
=(1/7)sin(π/3)+(1/2)(4√3/7)=(√3)/14+2√3/7=5(√3)/14.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式