求不定积分1/[根号下(1+e^x)+根号下(1-e^x)

 我来答
教育小百科达人
2019-04-13 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:479万
展开全部

具体回答如图:

连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

扩展资料:

如果F(x)是f(x)在区间I上的一个原函数,那么F(x)+C就是f(x)的不定积分,即∫f(x)dx=F(x)+C。因而不定积分∫f(x) dx可以表示f(x)的任意一个原函数。

对于一个函数f,如果在闭区间[a,b]上,无论怎样进行取样分割,只要它的子区间长度最大值足够小,函数f的黎曼和都会趋向于一个确定的值S,那么f在闭区间[a,b]上的黎曼积分存在,并且定义为黎曼和的极限S。

不定积分的积分公式主要有如下几类:含ax+b的积分、含√(a+bx)的积分、含有x^2±α^2的积分、含有ax^2+b(a>0)的积分、含有√(a²+x^2) (a>0)的积分、含有√(a^2-x^2) (a>0)的积分、含有√(|a|x^2+bx+c) (a≠0)的积分、含有三角函数的积分、含有反三角函数的积分、含有指数函数的积分、含有对数函数的积分、含有双曲函数的积分。

积分是线性的。如果一个函数f可积,那么它乘以一个常数后仍然可积。如果函数f和g可积,那么它们的和与差也可积。

若f(x)在[a,b]上恒为正,可以将定积分理解为在Oxy坐标平面上,由曲线(x,f(x))、直线x=a、x=b以及x轴围成的面积值(一种确定的实数值)。

积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。主要分为定积分、不定积分以及其他积分。积分的性质主要有线性性、保号性、极大值极小值、绝对连续性、绝对值积分等。

参考资料来源:百度百科——不定积分

hxzhu66
高粉答主

2014-04-01 · 醉心答题,欢迎关注
知道大有可为答主
回答量:2.6万
采纳率:97%
帮助的人:1.2亿
展开全部

如图,有不清楚请追问。满意的话,请及时评价。谢谢!

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
匿名用户
2017-04-01
展开全部
令e^x=t x=lnt dx=(1/t)dt 原式=∫[t(1+t)/√(1-t²)](1/t)dt =∫(1+t)/√(1-t²)dt 令t=sinθ dt=cosθdθ 上式=∫[(1+sinθ)/√(1-sin²θ)](cosθ)dθ =∫(1+sinθ)dθ =θ-cosθ+C θ=arcsint=arcsine^x cosθ=√(1-sin²θ)=√(1-t²)=√(1-e^2x) 原式=arcsine^x-√(1-e^2x)+C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
神也羡我九月Cn
2017-06-03
知道答主
回答量:1
采纳率:0%
帮助的人:994
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式