x(arctanx)^2求不定积分

 我来答
普海的故事
2017-03-11 · TA获得超过3974个赞
知道大有可为答主
回答量:6496
采纳率:0%
帮助的人:942万
展开全部
用分部积分,
设u=arctanx,v'=1/x^2
u'=1/(1+x^2),v=-1/x,
原式=-(arctanx)/x+∫ dx/[x(1+x^2)]
=-(arctanx)/x+∫(-x) dx/(1+x^2)+∫ dx/x
=-(arctanx)/x-(1/2)∫d(1+x^2)/(1+x^2)+∫ dx/x
=-(arctanx)/x-(1/2)ln(1+x^2)+ln|x|+C
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式