有一片匀速生长的草地,可以供10头牛吃20天,或供15头牛吃10天,那么这
有一片匀速生长的草地,可以供10头牛吃20天,或供15头牛吃10天,那么这片草地上每天生长的草量可供多少头牛吃1天?...
有一片匀速生长的草地,可以供10头牛吃20天,或供15头牛吃10天,那么这片草地上每天生长的草量可供多少头牛吃1天?
展开
2个回答
展开全部
解:设1头牛1天吃的草为“1“,由条件可知,前后两次青草的问题相差为10×20-15×10=50.
为什么会多出这50呢?这是第二次比第一次多的那(20-10)=10天生长出来的,所以每天生长的青草为50÷10=5.
现从另一个角度去理解,这个牧场每天生长的青草正好可以满足5头牛吃.由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(10-5)×20=100.
那么:第一次吃草量20×10=200,第二次吃草量,15×10=150;
每天生长草量50÷10=5.
原有草量(10-5)×20=100或200-5×20=100.
25头牛分两组,5头去吃生长的草,其余20头去吃原有的草那么100÷20=5(天)
答:可供25头牛吃5天.
为什么会多出这50呢?这是第二次比第一次多的那(20-10)=10天生长出来的,所以每天生长的青草为50÷10=5.
现从另一个角度去理解,这个牧场每天生长的青草正好可以满足5头牛吃.由此,我们可以把每次来吃草的牛分为两组,一组是抽出的15头牛来吃当天长出的青草,另一组来吃是原来牧场上的青草,那么在这批牛开始吃草之前,牧场上有多少青草呢?(10-5)×20=100.
那么:第一次吃草量20×10=200,第二次吃草量,15×10=150;
每天生长草量50÷10=5.
原有草量(10-5)×20=100或200-5×20=100.
25头牛分两组,5头去吃生长的草,其余20头去吃原有的草那么100÷20=5(天)
答:可供25头牛吃5天.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询