∫dx/3+cosx dx 详细过程
∫ 1/(3 + cosx) dx= (1/√2)arctan[(1/√2)tan(x/2)] + C。C为积分常数。
解答过程如下:
令u = tan(x/2),cosx = (1 - u²)/(1 + u²),dx = 2du/(1 + u²)
∫ 1/(3 + cosx) dx
= ∫ 1/[3 + (1 - u²)/(1 + u²)] · 2/(1 + u²) · du
= ∫ (1 + u²)/(3 + 3u² + 1 - u²) · 2/(1 + u²) · du
= 2∫ 1/(4 + 2u²) · du
= ∫ 1/(2 + u²) · du
= (1/√2)arctan(u/√2) + C
= (1/√2)arctan[(1/√2)tan(x/2)] + C
扩展资料:
分部积分:
(uv)'=u'v+uv'
得:u'v=(uv)'-uv'
两边积分得:∫ u'v dx=∫ (uv)' dx - ∫ uv' dx
即:∫ u'v dx = uv - ∫ uv' d,这就是分部积分公式
也可简写为:∫ v du = uv - ∫ u dv
不定积分的公式
1、∫ a dx = ax + C,a和C都是常数
2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1
3、∫ 1/x dx = ln|x| + C
4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1
5、∫ e^x dx = e^x + C
6、∫ cosx dx = sinx + C
7、∫ sinx dx = - cosx + C
8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C
广告 您可能关注的内容 |