证明:A、B是两个同阶上三角形矩阵,则A^{T}B^{T}是下三角形矩阵

 我来答
纷寻甜N
2017-07-07 · TA获得超过1298个赞
知道小有建树答主
回答量:490
采纳率:20%
帮助的人:73.8万
展开全部
S^-1AS=C=diag(a1*I1,a2*I2,...,ar*Ir)
分为r块,每块特征值相同,Ii都是单位阵
SCS^-1B=AB=BA=BSCS^-1,左乘S^-1,右乘S,得
CS^-1BS=S^-1BSC,记G=S^-1BS,那么CG=GC
因为C是对角阵,而G与C可交换,易知
G=diag(G1,G2,...,Gr)是块对角阵,Gi与Ii同阶
再将Gi进行对角化,即存在可逆阵Ti,
使得Ti^-1*Gi*Ti=Di是对角阵
记T=diag(T1,T2,...,Tr)是块对角可逆阵
于是T^-1GT=diag(D1,D2,...,Dr)=D是对角阵
即T^-1S^-1BST=D
而T^-1S^-1AST=T^-1CT
因为C是对角阵,T是与C形状相同的块对角阵,因此CT=TC
于是T^-1S^-1AST=T^-1CT=T^-1TC=C
记P=ST是可逆阵
便有P^-1AP=C,P^-1BP=D 同时化为了对角阵
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式