高数极限求过程
1个回答
2017-09-26
展开全部
原式=lim(x->0) e^ln[x^(-100)*e^(-1/x^2)]
=e^lim(x->0) [-100lnx-1/x^2]
=(1/e)^lim(x->0) [(100x^2*lnx+1)/x^2]
=(1/e)^lim(x->0) [(200x*lnx+100x)/2x]
=(1/e)^lim(x->0) (100lnx+50)
=(1/e)^(-∞)
=+∞
=e^lim(x->0) [-100lnx-1/x^2]
=(1/e)^lim(x->0) [(100x^2*lnx+1)/x^2]
=(1/e)^lim(x->0) [(200x*lnx+100x)/2x]
=(1/e)^lim(x->0) (100lnx+50)
=(1/e)^(-∞)
=+∞
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询