求积分要详细解答过程 10
1个回答
展开全部
(2)
∫(1-x)²dx/√x
=∫(1-2x+x²)dx/√x
=∫(1/√x - 2√x + x^(3/2)) dx
=2√x - (4/3)x^(3/2) + (2/5)x^(5/2) +C
(8)
∫x arctanx dx
分部积分
=(1/2)∫ arctanx d(x²)
=(1/2)[x²arctanx - ∫x²d(arctanx)]
=(1/2)[x²arctanx - ∫x²dx/(1+x²)]
=(1/2)[x²arctanx - ∫(x²+1-1)dx/(1+x²)]
=(1/2)[x²arctanx - ∫dx + ∫dx/(1+x²)]
=(1/2)[x²arctanx - x + arctanx] +C
∫(1-x)²dx/√x
=∫(1-2x+x²)dx/√x
=∫(1/√x - 2√x + x^(3/2)) dx
=2√x - (4/3)x^(3/2) + (2/5)x^(5/2) +C
(8)
∫x arctanx dx
分部积分
=(1/2)∫ arctanx d(x²)
=(1/2)[x²arctanx - ∫x²d(arctanx)]
=(1/2)[x²arctanx - ∫x²dx/(1+x²)]
=(1/2)[x²arctanx - ∫(x²+1-1)dx/(1+x²)]
=(1/2)[x²arctanx - ∫dx + ∫dx/(1+x²)]
=(1/2)[x²arctanx - x + arctanx] +C
追问
够狠
你自己原地爆炸吧
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询