1个回答
展开全部
(1)
由已知得:a1、a5、a17成等比数列
a5²=a1·a17
(a1+4d)²=a1·(a1+16d)
d(a1-2d)=0
d≠0,因此只有a1-2d=0
a1=2d
an=a1+(n-1)d=2d+(n-1)d=(n+1)d
q=a5/a1=6d/(2d)=3
a(kn)=a1·qⁿ⁻¹
(kn+1)d=2d·3ⁿ⁻¹
kn=2·3ⁿ⁻¹-1
(2)
kn=2·3ⁿ⁻¹-1
k1+k2+...+kn
=2·(1+3+...+3ⁿ⁻¹)-n
=2·1·(3ⁿ-1)/(3-1) -n
=3ⁿ-n-1
由已知得:a1、a5、a17成等比数列
a5²=a1·a17
(a1+4d)²=a1·(a1+16d)
d(a1-2d)=0
d≠0,因此只有a1-2d=0
a1=2d
an=a1+(n-1)d=2d+(n-1)d=(n+1)d
q=a5/a1=6d/(2d)=3
a(kn)=a1·qⁿ⁻¹
(kn+1)d=2d·3ⁿ⁻¹
kn=2·3ⁿ⁻¹-1
(2)
kn=2·3ⁿ⁻¹-1
k1+k2+...+kn
=2·(1+3+...+3ⁿ⁻¹)-n
=2·1·(3ⁿ-1)/(3-1) -n
=3ⁿ-n-1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询