求1/(x^2)*√(x^2-9)dx的不定积分,下面有图,在线等,谢谢
2017-11-25 · 知道合伙人金融证券行家
关注
展开全部
∫ √(9 - x²) dx
--> x = 3 siny,dx = 3 cosy dy -->
= ∫ √(9 - 9sin²y) 3cosy dy
= ∫ 3cosy 3cosy dy
= 9∫ cos²y dy
= (9/2)∫ (1 + cos2y) dy
= (9/2)[y + (1/2)sin2y] + C
= (9/2)y + (9/2)sinycosy + C
= (9/2)arcsin(x/3) + (9/2)(x/3)[√(9 - x²)/3] + C
= (9/2)arcsin(x/3) + (1/2)x√(9 - x²) + C
--> x = 3 siny,dx = 3 cosy dy -->
= ∫ √(9 - 9sin²y) 3cosy dy
= ∫ 3cosy 3cosy dy
= 9∫ cos²y dy
= (9/2)∫ (1 + cos2y) dy
= (9/2)[y + (1/2)sin2y] + C
= (9/2)y + (9/2)sinycosy + C
= (9/2)arcsin(x/3) + (9/2)(x/3)[√(9 - x²)/3] + C
= (9/2)arcsin(x/3) + (1/2)x√(9 - x²) + C
追问
兄弟题目没看错吧
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询