高中数学因式分解
把下列各式因式分解1、(z^2-x^2-y∧2)^2-4x^2×y∧22、x^3+12x-6x^2-83、x^2-4xy+4y^2-x+2y-24、x^3+3x^2-4题...
把下列各式因式分解
1、(z^2-x ^2-y∧2)^ 2-4x^ 2×y∧2
2、x^ 3+12x-6x^2-8
3、x ^2-4xy+4y^2-x+2y-2
4、x^3+3x^2-4
题目比较多,多谢了! 展开
1、(z^2-x ^2-y∧2)^ 2-4x^ 2×y∧2
2、x^ 3+12x-6x^2-8
3、x ^2-4xy+4y^2-x+2y-2
4、x^3+3x^2-4
题目比较多,多谢了! 展开
展开全部
1.用平方差公式:
(z²-x²-y²)²-4x²y²
=[(z²-x²-y²)-2xy][(z²-x²-y²+2xy]
=[z²-(x+y)²][z²-(x-y)²]
=(z-x-y)(z+x+y)(z-x+y)(z+x-y)
2.x³+12x-6x²-8
=x³-6x²+12x-8,可用多项式定理
=(x)³-3(x)²(2)+3(x)(2)²-(2)³
=(x-2)³
3.x²-4xy+4y²-x+2y-2
=(x-2y)²-(x-2y)-2
=u²-u-2,u=x-2y,用十字相乘法
=(u-2)(u+1)
=(x-2y-2)(x-2y+1)
4.x³+3x²-4
设f(x)=x³+3x²-4,常数-4的因子为{±1,±2,±4}
∵f(1)=1+3-4=0
∴(x-1)是其中一个因式,
用综合除法,(x³+3x²-4)/(x-1)化简得:
f(x)=(x-1)(x²+4x+4)
=(x-1)(x+2)²
∴x³+3x²-4=(x-1)(x+2)²
(z²-x²-y²)²-4x²y²
=[(z²-x²-y²)-2xy][(z²-x²-y²+2xy]
=[z²-(x+y)²][z²-(x-y)²]
=(z-x-y)(z+x+y)(z-x+y)(z+x-y)
2.x³+12x-6x²-8
=x³-6x²+12x-8,可用多项式定理
=(x)³-3(x)²(2)+3(x)(2)²-(2)³
=(x-2)³
3.x²-4xy+4y²-x+2y-2
=(x-2y)²-(x-2y)-2
=u²-u-2,u=x-2y,用十字相乘法
=(u-2)(u+1)
=(x-2y-2)(x-2y+1)
4.x³+3x²-4
设f(x)=x³+3x²-4,常数-4的因子为{±1,±2,±4}
∵f(1)=1+3-4=0
∴(x-1)是其中一个因式,
用综合除法,(x³+3x²-4)/(x-1)化简得:
f(x)=(x-1)(x²+4x+4)
=(x-1)(x+2)²
∴x³+3x²-4=(x-1)(x+2)²
展开全部
输入着实在是太费事了,所以就把思路和结果告诉你吧
1 利用平方差公式 拆分两次,结果是(Z-X-Y)(Z+X+Y)(Z-X+Y)(Z+X-Y)
2 先用试代法得出2是它的一个解,然后用原式除以X-2(这种方法叫做假设方程式整除法,比较变态,但很好用), 最后结果是(X-2)^3
3 原式=(X-2Y)^2-(X-2Y)-2=(X-2Y+1)(X-2Y-2)
4 原式=(X^3-1)+3(X^2-1)把前半部分和后半部分分别拆开后两式在提取出共同的式子,最后结果是(X-1)(X+2)^2
累死我了,希望你能把分给我。。。。
1 利用平方差公式 拆分两次,结果是(Z-X-Y)(Z+X+Y)(Z-X+Y)(Z+X-Y)
2 先用试代法得出2是它的一个解,然后用原式除以X-2(这种方法叫做假设方程式整除法,比较变态,但很好用), 最后结果是(X-2)^3
3 原式=(X-2Y)^2-(X-2Y)-2=(X-2Y+1)(X-2Y-2)
4 原式=(X^3-1)+3(X^2-1)把前半部分和后半部分分别拆开后两式在提取出共同的式子,最后结果是(X-1)(X+2)^2
累死我了,希望你能把分给我。。。。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询