展开全部
f(x)=-√3(1-cos2x)/2+1/2*sin2x
=1/2*sin2x+√3/2*cos2x-√3/2
=sin2xcosπ/3+cos2xsinπ/3-√3/2
=sin(2x+π/3)-√3/2
f(α/2)=sin(α+π/3)-√3/2=1/4-√3/2
sin(α+π/3)=1/4
α+π/3=arcsin(1/4)或α+π/3=π-arcsin1/4
α=arcsin(1/4)-π/3或α=2π/3-arcsin1/4
因为1/4<√3/2
所以arcsin(1/4)<π/3
而α>0
所以α=2π/3-arcsin1/4
=1/2*sin2x+√3/2*cos2x-√3/2
=sin2xcosπ/3+cos2xsinπ/3-√3/2
=sin(2x+π/3)-√3/2
f(α/2)=sin(α+π/3)-√3/2=1/4-√3/2
sin(α+π/3)=1/4
α+π/3=arcsin(1/4)或α+π/3=π-arcsin1/4
α=arcsin(1/4)-π/3或α=2π/3-arcsin1/4
因为1/4<√3/2
所以arcsin(1/4)<π/3
而α>0
所以α=2π/3-arcsin1/4
来自:求助得到的回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询