高等数学的极值问题 20

高等数学的极值问题第31题... 高等数学的极值问题第31题 展开
 我来答
庄之云7S
2017-12-30 · TA获得超过2318个赞
知道小有建树答主
回答量:1896
采纳率:46%
帮助的人:138万
展开全部
高数方法:
f = xy(a-x-y) = axy-yx^2-xy^2
f'<x> = ay-2xy-y^2 = y(a-2x-y)
f'<y> = ax-x^2-2xy = x(a-x-2y)
得驻点 (0,0), (0,a), (a,0), (a/3, a/3)
A:f''<xx> = -2y, B: f''<xy> = a-2x-2y, C:f''<yy> = -2x
对于驻点 (0,0), (0,a), (a,0) ,AC-B^2<0, 不是极值点。
对于驻点 (a/3, a/3) ,A=-2a/3<0, AC-B^2 = 4a^2/9 - a^2/9 > 0,
故 (a/3, a/3) 为极大值点, 极大值 f<max> = a^3/27。
初数方法:
f = xy(a-x-y) ≤ { [x+y+(a-x-y)]/3}^3 = a^3/27
最大值在 x = y = a/3 时取得。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式