
已知关于x的一元二次方程kx²+(k+2)x+k/4=0有两个不相等的实数根 是否存在实数k,使
1个回答
展开全部
不存在。因为方程有不等的实根,所以(k+2)^2-4*k*k/4>0,即k>-1
要使两个实数根x1,x2倒数和为0,即1/x1+1/x2=0,解得x1+x2=0,因为x1+x2=(-k-2)/k=0
所以k=-2,与前面的k>-1矛盾,所以不存在
要使两个实数根x1,x2倒数和为0,即1/x1+1/x2=0,解得x1+x2=0,因为x1+x2=(-k-2)/k=0
所以k=-2,与前面的k>-1矛盾,所以不存在
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询