python sklearn 如何用测试集数据画出决策树(非开发样本)
1个回答
2018-09-24 · 百度知道官方认证企业
腾讯电脑管家
腾讯电脑管家是腾讯公司推出的免费安全管理软件,能有效预防和解决计算机上常见的安全风险,并帮助用户解决各种电脑“疑难杂症”、优化系统和网络环境,是中国综合能力最强、最稳定的安全软件。
向TA提问
关注
展开全部
#coding=utf-8
from sklearn.datasets import load_iris
from sklearn import tree
iris = load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)
from sklearn.externals.six import StringIO
import pydot
dot_data = StringIO()
tree.export_graphviz(clf, out_file=dot_data)
graph = pydot.graph_from_dot_data(dot_data.getvalue())
graph[0].write_dot('iris_simple.dot')
graph[0].write_png('iris_simple.png')
from sklearn.datasets import load_iris
from sklearn import tree
iris = load_iris()
clf = tree.DecisionTreeClassifier()
clf = clf.fit(iris.data, iris.target)
from sklearn.externals.six import StringIO
import pydot
dot_data = StringIO()
tree.export_graphviz(clf, out_file=dot_data)
graph = pydot.graph_from_dot_data(dot_data.getvalue())
graph[0].write_dot('iris_simple.dot')
graph[0].write_png('iris_simple.png')
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询