第(5)题,已知离散型联合分布律,怎么求分布函数
近似于累加,每个分段点的概率都等于这点之前的所有P之和。
F(x)=0, x<0
0.2, 0<=x<2
0.7, 2<=x<3 (0.7=0.2+0.5)
1, x>=3 (1=0.7+0.3)
例如:
知道分布律求分布函数的方法:
F(x)=P(X≤x)
分类讨论如下:
(1)x<0时,显然,F(x)=P(X≤x)=0
(2)0≤x<1时,F(x)=P(X≤x)=P(X=0)=22/35
(3)1≤x<2时,F(x)=P(X≤x)=P(X=0)+P(X=1)=22/35+12/35=34/35
(4)x≥2时,F(x)=P(X≤x)=P(X=0)+P(X=1)+P(X=2)=22/35+12/35+1/35=1
扩展资料
分布函数,记作F(x),即F(x)=P(ξ<x) (-∞<x<+∞),由它并可以决定随机变量落入任何范围内的概率。
例如在桥梁和水坝的设计中,每年河流的最高水位ξ小于x米的概率是x的函数,这个函数就是最高水位ξ的分布函数。实际应用中常用的分布函数有正态分布函数、普阿松分布函数、二项分布函数等等。
近似于累加,每个分段点的概率都等于这点之前的所有P之和。
F(x)=0, x<0
0.2, 0<=x<2
0.7, 2<=x<3 (0.7=0.2+0.5)
1, x>=3 (1=0.7+0.3)
例如:
知道分布律求分布函数的方法:
F(x)=P(X≤x)
分类讨论如下:
(1)x<0时,显然,F(x)=P(X≤x)=0
(2)0≤x<1时,F(x)=P(X≤x)=P(X=0)=22/35
(3)1≤x<2时,F(x)=P(X≤x)=P(X=0)+P(X=1)=22/35+12/35=34/35
(4)x≥2时,F(x)=P(X≤x)=P(X=0)+P(X=1)+P(X=2)=22/35+12/35+1/35=1
扩展资料:
离散型随机变量的分布律和它的分布函数是相互唯一决定的。它们皆可以用来描述离散型随机变量的统计规律性,但分布律比分布函数更直观简明,处理更方便。因此,一般是用分布律(概率函数)而不是分布函数来描述离散型随机变量。
参考资料来源:百度百科-分布函数