4个回答
展开全部
解:原式=lnx+¼x的4次方+C
直接求解即可
直接求解即可
追问
可能我写的不清楚,我修改了一下,你再看一下哈
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设 x/(1+x^3) = A/(1+x) + (B+Cx)/(1-x+x^2)
= [A(1-x+x^2)+(B+Cx)(1+x)]/(1+x^3)
A+B = 0, -A+B+C = 1, A+C = 0
联立解得 A = -1/3, B = C = 1/3
∫[x/(1+x^3)]dx = (1/3)∫[(1+x)/(1-x+x^2)-1/(1+x)]dx
= (1/3)∫(1+x)dx/(1-x+x^2) - (1/3)∫dx/(1+x)
= (1/3)∫(x-1/2+3/2)dx/(x^2-x+1) - (1/3)∫d(1+x)/(1+x)
= (1/6)∫(2x-1)dx/(x^2-x+1) + (1/2)∫d(x-1/2)/[(x-1/2)^2+3/4] - (1/3)ln(1+x)
= (1/6)ln(x^2-x+1) + (1/2)(2/√3)arctan(x-1/2)/(√3/2)] - (1/3)ln(1+x) + C
= (1/6)ln[(x^2-x+1)/(1+x)^2] + (1/√3)arctan[(2x-1)/√3] + C
= [A(1-x+x^2)+(B+Cx)(1+x)]/(1+x^3)
A+B = 0, -A+B+C = 1, A+C = 0
联立解得 A = -1/3, B = C = 1/3
∫[x/(1+x^3)]dx = (1/3)∫[(1+x)/(1-x+x^2)-1/(1+x)]dx
= (1/3)∫(1+x)dx/(1-x+x^2) - (1/3)∫dx/(1+x)
= (1/3)∫(x-1/2+3/2)dx/(x^2-x+1) - (1/3)∫d(1+x)/(1+x)
= (1/6)∫(2x-1)dx/(x^2-x+1) + (1/2)∫d(x-1/2)/[(x-1/2)^2+3/4] - (1/3)ln(1+x)
= (1/6)ln(x^2-x+1) + (1/2)(2/√3)arctan(x-1/2)/(√3/2)] - (1/3)ln(1+x) + C
= (1/6)ln[(x^2-x+1)/(1+x)^2] + (1/√3)arctan[(2x-1)/√3] + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询