成矿时空结构及动力学
2020-01-16 · 技术研发知识服务融合发展。
一、成矿域与成矿带(成矿空间结构)
李春昱1984年最先按板块缝合线作为构造域的中心,将中国划分为4大构造域,即:①以西伯利亚古板块和塔里木—中朝板块以及哈萨克斯坦3个大板块之间的缝合线为中心,作为中国北方构造域;②中部以塔里木-中朝板块与华南及东南亚板块之间的缝合线为中心,作为秦祁昆构造域;③西部以华南-东南亚板块与拉萨冈底斯板块及印度板块之间的缝合线为中心,作为中国西南部构造域;④东部沿海一带以华南—东南亚板块与菲律宾海板块之间的缝合线为中心,作为东南沿海构造域,中国沿海一带主要位于本构造域的西部。这4个构造域构成了中国4个大成矿域。他并且指出:“在每个成矿域的缝合线上或俯冲带(包括逆冲带)上,常出露代表大洋壳的蛇绿岩带,产生大洋环境所形成的矿床。在缝合线的两侧常伴有板块俯冲带以及和俯冲带有关的岩浆弧,这里产生与俯冲构造环境有关的矿床,与碰撞有关的构造环境,实际上即板块缝合线的一种构造形式”。陈毓川(1995,1998)将中国的成矿域划分为以下5个:①前寒武纪中朝-扬子古陆成矿域;②古亚洲成矿域;③中-新生代环太平洋成矿域;④特提斯成矿域;⑤秦岭-祁连山-昆仑山成矿域。翟裕生(1999)以区域大地构造演化为基础,区域构造、成矿时代和区域岩石圈三者结合作为划分成矿区域的依据,将中国境内划分为6个成矿域:①天山-兴蒙成矿域;②塔里木-华北成矿域;③秦-祁-昆成矿域;④扬子成矿域;⑤华南成矿域;⑥喜马拉雅-三江成矿域。以上3位学者的划分方案,尽管各有不同,但有一个共同点就是重视并单独划分了“秦-祁-昆成矿域”,无疑是正确而必要的。我们认为华北古陆西南边缘成矿系统应当归属于“秦-祁-昆成矿域”。按照区域构造演化和成矿系统的分布现状,进一步将此古陆边缘划分为3个成矿带,即:①阿拉善南缘龙首山成矿带。主要由中太古代—中元古代裂解期前成矿系统组成。包含陆核边缘海盆沉积Fe成矿组合和裂谷期前底辟岩浆Ni-Cu-Co-PGE-Au成矿组合;②祁连山成矿带。主要由中新元古代裂解成矿系统、加里东期活动大陆边缘成矿系统和碰撞造山成矿系统组成。包含海底喷流沉积Fe-BaSO4(重晶石)-Cu成矿组合、早期陆缘弧火山Cu-Zn-Pb-Au-Ag和Zn Pb Cu Au Ag成矿组合、中期弧后盆地火山Cu(Zn)成矿组合、中晚期岛弧火山Cu和Pb Zn Cu成矿组合、与俯冲作用有关岩浆热液W成矿组合、与俯冲作用有关岩浆热液Pb-Zn成矿组合、洋壳残片蛇绿岩Cr成矿组合和残余盆地沉积Cu成矿组合等;③阿尔金成矿带。主要由走滑断层系成矿系统组成,目前还只包含韧性剪切Au成矿组合,(图1-1)(表7-1)。
二、成矿期与成矿高峰期(成矿时间结构)
本区成矿区主要集中在:①中太古代:如东大山铁矿,中型;②中元古代:如金川Ni-Cu-Co-PGE(铂族元素)-Au矿,其中Ni超大型(Ni金属547万吨,品位1.07%),Cu超大型(Cu金属346万吨,品位0.67%),Co大型(Co金属16万吨,品位0.03%),PGE(铂族元素)超大型(207吨),Au大型(79吨);③中新元古代:镜铁山桦树沟Fe矿,大型(矿石量4.5亿吨,全铁37.8%),其中伴生重晶石矿,大型(重晶石3274万吨,BaSO47.32%)。镜铁山黑沟Fe矿,大型(矿石量1.5亿吨,全铁36.14%);④加里东期:如白银厂Cu矿,大型(Cu金属117万吨,品位1.22%~2.84%)。小铁山Pb、Zn、Cu矿,其中PbZn大型(Pb金属41万吨,Zn金属64万吨,Pb品位3.85%,Zn品位5.45%),Cu中型(Cu金属14万吨,品位1.38%)。清水沟PbZn矿,中型。红沟Cu矿,中型。胶龙掌PbZn矿,中型。石居里Cu矿,中型。塔儿沟WO3矿,大型(WO320.8万吨,品位0.736%)。小柳沟WO3矿,大型(WO3>20万吨,品位0.1%~2.5%)。大道尔吉铬铁矿,中型;⑤华里西期:寒山Au矿,大型(Au>20吨,品位1.4×10-6~24.15×10-6)。鹰嘴山Au矿,中型。从上述大中型矿床反映的成矿强度和频度衡量,本区成矿的高峰期应为中元古代和加里东期。
三、成矿时空变化及动力学
对本区来说,总体上从北部的龙首山成矿带→南部的祁连山成矿带→西部的阿尔金成矿带发展,陆缘构造的动力型式变化规律为“离散型”(拉张为主)→会聚型(拉张-挤压交替)→碰撞型(挤压为主)→转换型(走滑剪切);成矿时代由老到新,即中太古代、中元古代→中新元古代、加里东期→华力西期;沉积成矿作用由“陆核边缘海盆沉积”→“海底喷流沉积”→“残余盆地沉积”;岩浆成矿作用由“地幔底辟岩浆侵入”→海底双峰式,基性火山喷发,蛇绿岩残片构造侵位→壳源重熔中酸性岩浆侵入流体成矿;成矿元素组合由幔源→壳源、深源→浅源的变化,如Ni、Cu、Co、PGE、Au、S-Fe→Fe、Ba-Cu、Pb、Zn、Au、Ag-Cu、Pb、Zn-Cu(Zn)-W-Pb、Zn-Cr→Au。由此可见,华北古陆西南边缘的构造演化与成矿作用的时空变化具有明显的耦合关系,说明构造活动的规模、强度和型式,往往就是成矿系统和矿床组合的主要背景,而一定的成矿系统和矿床组合又可视为某种构造成矿背景的标记。
四、典型的共生矿床类型
本大陆边缘具有一系列典型的共生的矿床类型,如金川岩浆深部熔离贯入型Ni-Cu-Co-PGE-Au矿床;镜铁山海底喷流沉积Fe-BaSO4(重晶石)-Cu矿床;白银厂海底火山块状硫化物Cu-Zn-Pb-Au-Ag矿床;小铁山海底火山块状硫化物Zn-Pb-Cu-Au-Ag矿床;塔儿沟脉型、矽卡岩型W矿床,小柳沟蚀变岩型、矽卡岩型W矿床;寒山、鹰嘴山韧性剪切Au矿床等。这些共生的矿床类型,乃是这一大陆边缘构造演化的标记,它们的每一个矿种都达到了“超大型”或“大型”矿床的规模,这种共生的矿床类型,具有极大的典型性和代表性,反映了华北古陆西南边缘成矿谱系的概貌。
五、金川岩浆矿床研究的进展
关于金川矿床的成矿规律,以往曾有过较系统的阐述。本次研究新提出或进一步论证了以下方面的观点:①提出金川超镁铁岩体的原生岩浆是高镁玄武岩浆[w(MgO)≈10.8%];②提出同一个金川矿区Ni-Cu矿体可能起源于含PGE不同的母岩浆。一部分矿体PGE含量高,是起源于原始地幔PGE不亏损的岩浆,另有部分矿体PGE含量很低,则是原始岩浆分离后形成PGE亏损的派生岩浆;③进一步论证了硫化物深部溶离-分期贯入是形成金川矿床的主要机制,并且认为,在缺乏地壳长英质混染(如萨德贝里矿床)和外部硫源加入(如诺里尔斯克矿床)的证据的情形下,只有这种深部熔离-分期贯入机制,才能造就成“金川式”的小岩体、大矿床。
六、关于“小岩体、大矿床”规律
金川岩体只有1.34km2面积,却赋含有近千万吨的镍、铜储量,这种世界级超大(巨)型矿床赋存在这样小的岩体中,的确是一个令人注目的现象。我们在总结中国镍矿床(汤中立等,1989)中提出“镍的成矿岩体,一般规模较小。只有3个成矿岩体的出露面积达到1km2左右(金川、赤柏松、大坡岭),其余成矿岩体的面积都在0.1km2以下”、“成矿岩体的产状可分两类,一类为陡倾斜(倾角60°以上)的岩墙状、脉状、透镜状;另一类为较舒缓的岩床、岩盆、椭球状、扁柱状。巨大的和大型的矿床多以前一类产状产出”。后来我们又多次论述过,是由于岩浆深部熔离-贯入成矿机制,导致了“小岩体成大矿”。
芮宗瑶等在研究斑岩型铜钼矿床时也曾统计,绝大多数成矿岩体都是小岩体,出露面积小于0.5km2的含矿岩体占32.5%;0.5~1km2占25%;1~5km2占20%;大于5km2占22.5%。含矿岩体产状为岩株的占69.8%;岩墙和岩脉占9.4%;岩柱占7.5%;岩筒岩颈占9.4%。表明大部分岩体呈岩株状。
此外某些岩浆铬铁矿床、钛磁铁矿床、金刚石矿床等,都有小岩体中赋存大矿的实例。可见“小岩体成大矿”不仅是本区,也是带有一定广泛性的岩浆矿床成矿规律。
对金川这种类型的岩浆矿床来说,还特别值得提及以下成矿规律:①成矿岩体是在大陆边缘裂解期前的拉张应力作用条件下,经岩浆底辟上侵形成;②现存成矿岩体是由纯橄榄岩、二辉橄榄岩、斜长二辉橄榄岩、橄榄二辉岩和二辉岩等超镁铁岩石所组成,这些岩石的MgO含量变化于39.74%~25.87%之间。这次提出岩体的原生岩浆是地幔岩经部分熔融的高镁玄武岩浆w(MgO)≈10.8%。现存岩体与原生岩浆成分的这种差异,说明原生岩浆上侵过程中,曾经历过强烈的分异作用,分异后大部分偏中酸性、基性和部分超基性的岩浆大都先侵入到不同的空间或喷出地表,形成同源岩浆岩系列或喷发岩流,只有少部分超基性岩浆伴随着深部熔离的矿质贯入到现存的空间成岩成矿;③上侵岩浆是在开放动态条件下,发生上述深部分异和深部熔离作用,分异为不含矿岩浆、含矿岩浆、富矿岩浆、矿浆几部分,依序多次贯入现存空间成矿,一般来说晚期贯入比早期贯入的浆体矿质多、密度大而粘度小,往往位于早期浆体的中下部或下部,在早晚期浆体接触处,常发生有限的混合作用;④由于“含矿岩浆”、“富矿岩浆”和“矿浆”对应固结为星点浸染状贫矿(石)体、海绵状富矿(石)体和块状特富矿(石)体,因此总体上金川型矿床的矿(石)体类型从上到下,由浅及深有变富的分布规律。在区域上实际存在一个同源岩浆岩系列分布区,这个同源岩浆岩系列分布区中,目前还只发现金川一处超大型矿田。
七、“朱龙关群”和“北大河群”的控矿作用
朱龙关群(长城纪)由上部桦树沟组和下部熬油沟组两部分组成,主要分布于祁连山西段的青海黑河上游及甘肃肃南县朱龙关河流域。
桦树沟组主要为千枚岩、变质细碎屑岩夹火山碎屑岩、碳酸盐岩,含铁矿层。矿层围岩多为泥钙质千枚岩、板岩,少量位于硅质岩、灰岩底部。在主铁矿层下盘接触带附近有热液型铜矿体叠加。铁矿层伴生有重晶石,铁矿主要为镜铁矿石、镜铁矿-菱铁矿石等,全铁品位30%~40%。铁矿、重晶石矿达大型、铜矿达中型以上。铁矿、重晶石矿与地层为同生沉积且共同经受变形变质,铜矿虽属后期叠加,但与铁矿层位置显示了明显的附依关系。区域上在这套地层中已发现铁、铜矿床(点)数十处,除桦树沟、黑沟两处大型矿床外,其余均为中小型矿床、矿点。
熬油沟组下部为变质细砂岩、粉砂质板岩及泥质岩,上部为变质基性-中性火山熔岩、变质火山碎屑岩夹火山质板岩及碳酸盐岩。在桦树沟铁铜矿东南侧20km处的小柳沟钨矿区,熬油沟组是钨矿的直接围岩。在矿区西部为熬油沟组底部含砂质千枚岩、中厚层状石英岩夹绢云绿泥千枚岩、钙质千枚岩,局部可见透镜状云母角闪片岩及矽卡岩化灰岩,矿区东部主要是熬油沟组碎屑岩、火山岩夹碳酸盐岩。90%以上的矿体赋存在东部熬油沟组中。熬油沟组各种岩石成分含量(wB)W48.6×10-6~606×10-6、Cu83.6×10-2~708.6×10-2,如此高的含量说明围岩具备矿源层的性质。小柳沟矿区南北约4km,东西约3km,矿区范围约12km2。由15个矿体组成,其中主矿体4个,占储量95%以上。矿体主要赋存于云母角闪片岩、灰岩、千枚岩中,含矿地层一般都碎裂岩化、绿泥石化、透闪石化、硅化等。矿化以钨为主,其次有Cu、Bi、Mo等,主要矿石类型以稠密浸染状白钨矿-黄铜矿矿石和浸染状、稠密浸染状白钨矿矿石为主。控制WO3储量已达20万吨以上。属大型白钨矿床。地表除少量脉岩外,侵入岩不发育,在钻孔达450m深处见隐伏二长花岗岩体,岩体含W为0.5×10-6。
北大河群(前长城纪)主要为片岩、片麻岩夹结晶大理岩。以微古陆块形式分布于中祁连之北侧。在塔尔沟钨矿区,北大河群下部为混合岩、片麻岩段,上部为大理岩夹片岩段,钨矿主要赋存于片岩段中。条带状大理岩是矽卡岩白钨矿的容矿层,片岩段中主要产黑钨矿石英脉。整个北大河群W平均含量为3×10-6,高于W克拉克值约3倍。附近的野牛滩花岗闪长岩、黑云母花岗岩及斑状花岗岩W的平均含量为0.5×10-6~1.7×10-6,说明W矿矿源主要来自北大河群岩层。塔儿沟钨矿以黑钨脉型矿为主,白钨矽卡岩矿次之。
八、海相火山作用成矿规律
中国西部祁连造山带是中国主要的海相火山作用发育地区,火山作用可划分下述4大旋回,一是中元古代早期发生于柴达木—中祁连板块北部边缘的岛弧火山作用及洋岛火山作用;二是新元古代到加里东早期发生于华北古陆西南边缘的陆缘弧火山作用,随着陆缘弧与大陆分离,形成双峰式火山岩套,即宋叔和先生(1995)提出的富钠细碧-石英角斑岩系;三是加里东中期广泛发育于弧后盆地中的基性火山作用;四是加里东中晚期发生的岛弧火山作用,也形成富钠细碧角斑岩系。后3个旋回有从强到弱的演化规律。
第一火山作用旋回形成的熬油沟组火山岩,是桦树沟铁、铜、金及钡的重要物源,海底喷流作用所形成的对流热液循环系统,使得高温热流与围岩发生水-岩反应,将熬油沟组基性火山岩中的铁、铜、钡及其他组分萃取出来并随热流带入海底盆地中,形成铁、钡矿体及富铜、金层位,如桦树沟铁铜钡矿床,因此,祁连造山带中的熬油沟火山岩,是找铁、铜、金的重要地层单元。
第二火山作用旋回特点是整个祁连山以钙碱性中基性火山作用为主。它们是祁连大洋板块下插于华北古陆边缘之下所形成的产物。局部地段由于地壳较厚,毕尼奥夫带下插所形成的基性岩浆上升缓慢,使得深部地壳重熔并形成中酸性岩浆,这些岩浆首先喷出,形成石英角斑岩,尔后基性岩浆喷出,二者共同形成细碧-石英角斑岩系,在上述细碧-石英角斑岩系形成的过程中,陆缘弧也与大陆分离,导致地壳减薄,地幔上涌,出现地热异常,也形成前述的海底喷流成矿系统,如白银清水沟块状硫化物型铜矿,矿体赋于石英角斑凝灰岩中。
第三火山作用旋回主要发生于岛弧和弧后盆地,弧后盆地扩张所形成的基性火山岩具MORB性质,与塞浦路斯型块状硫化物铜矿有关,这以石居里铜矿为代表;岛弧火山岩也是寒山金矿的重要物源。
第四火山作用旋回主要发生于岛弧环境,属末期火山作用,分布局限,岛弧环境所形成的细碧-角斑岩系,往往也形成块状硫化物铜矿,与第二次火山成矿作用显著不同的是矿体赋存于细碧岩中。
从前述不难看出,加里东期与成矿作用有关的火山作用从早到晚,有双峰式→单峰式→双峰式变化的特点。成矿作用早期和晚期与双峰式火山岩套有关,形成别子型黄铁矿型铜矿、黑矿及黄矿。中期单峰火山岩多为MORB,形成塞浦路斯型块状硫化物铜矿。加里东期火山作用主要形成铜及多金属硫化物矿床。
关于岛弧裂谷成矿机制(兼论白银多金属块状硫化物矿床的形成环境):岩浆弧根据洋壳俯冲的位置及对象的不同,可划分为洋壳型岛弧及陆缘弧,前者是洋壳俯冲洋壳之下所形成的岛弧,岛弧的基底是洋壳;后者是洋壳俯冲于陆缘之下所形成的火山-岩浆弧,也有人叫做“山弧”,这种火山岩浆弧的基底是陆缘(金性春,1984)。当然,陆缘弧并非一直就固定在陆缘,随着洋壳的俯冲作用,一般毕尼奥夫带下插深度很大,且约与地面呈45°夹角向下俯冲,洋壳俯冲到距地表约150~200km时,进入地幔。在俯冲时,两板块摩擦所发生的热使洋壳岩石首先发生部分熔融,生成岩浆(Mitchell and Rading,1971),这些岩浆往往在距深海沟中心线约100~150km处的地表喷出,形成火山岩。上述俯冲作用常使得火山弧及后侧地幔出现异常,发生对流,使得火山弧与大陆分离,形成弧后盆地,进一步有可能形成弧后(间)洋盆。这样,前述的陆缘弧就会远离大陆,而移至大洋之中,犹如现在的日本岛弧。本区白银—清水—昌马陆缘弧的形成过程与之相似。陆缘弧与大陆分离之初,上地幔上涌,导致海底喷流作用发生,这是白银、清水沟一带铜及多金属块状硫化物矿床成矿系统形成的根本动因。但有学者认为白银矿床的形成环境是裂谷,主要理由是该区存在双峰火山岩套。从我们收集的资料来看,白银地区无裂谷形成之初的裂谷类磨拉石建造,也无裂谷建造中常见的陆相红层、蒸发岩等。从区域上来看,本区火山岩并非全属双峰岩套(细碧-石英角斑岩系),双峰岩套只是很少的一部分,而华北古陆边缘大部分地段则是钙碱性中基性火山岩。另外,大量事实表明,双峰岩套并非裂谷特有,只要有张性环境,就有可能形成双峰岩套。一般认为,地球化学特征尤其是具拓扑学意义的固定不变的地球化学特征,对鉴别大地构造环境有重要意义(黄申保,1998),不活泼的TiO2就具这种性质。裂谷环境拉斑玄武岩的TiO2(wB/%)一般达2.2%,洋中脊拉斑玄武岩TiO2为1.5%,而岛弧拉斑玄武岩的较低,一般为0.83%(Condie,1982,表2-20),但本区拉斑玄武岩TiO2均小于0.96%,这与岛弧拉斑玄武岩的相近。再结合关于以中元古代甚至更早、华北古陆西南缘与柴达木古陆边缘分属于两个不同的大陆边缘方面的资料,白银—清水沟—昌马一带属陆缘弧,不可能是裂谷。最后应指出,本区陆缘弧属水下弧,形成的火山岩属海相火山岩,火山物质喷出海平面。北祁连造山带这种陆缘弧单元的识别,具有重要的找矿勘查意义。
九、阿尔金断裂与成矿
阿尔金断裂与走廊南山断裂所组成的三角区,是重要的金矿成矿区,称之为祁连山的金三角。目前已查明的大型和中型金矿床有寒山和鹰嘴山。研究查明,阿尔金断裂是一个长期活动的陆内转换断层,最早可上溯到古生代;它又是一个韧性断裂带,切割了祁连NWW-SEE向构造带。祁连造山带的各构造实体,如蛇绿岩、岛弧火山岩是金矿的重要物源,鹰嘴山金矿就与蛇绿岩基性-超基性岩有关,其硅化所形成的含金石英脉Rb-Sr等时线年龄为(483±12)Ma(宜昌所测定,1999)。可见该区金矿化作用最早发生于早奥陶世,与阿尔金断裂作用有关的石英脉Rb-Sr等时线年龄为413.5Ma(李智佩,1999)、(303±10)Ma(毛景文,1997),钾氩法年龄为213.95~244Ma(毛景文,1997),由此不难看出,本区金矿化除上述早奥陶世外,在加里东末期或华力西早期,华力西晚期及印支期均有矿化作用发生,可见矿化作用是多期次的,后3期均是阿尔金断裂活动所产生的热流体作用于矿源体,使金矿质被活化萃取、迁移,在有利部位富集成矿的。这里的成矿有利部位具体指北祁连造山带次级断裂与阿尔金走滑断裂相交的锐角部位,具体到每个矿区的矿带、矿体又都受韧性及韧脆性剪切带控制。
十、华北板块西南边缘成矿谱系
华北板块西南边缘成矿谱系见图12-2。从图中可看出:不同历史阶段不同陆缘性质决定了不同的成矿系统(组合),形成不同的矿床,华北古陆边缘在龙首山边缘裂谷期前,于中太古代形成陆核边缘海沉积Fe矿床→中元古代在龙首山裂谷将要发生时,上地幔上拱,形成底辟岩浆型Ni、Cu、Pt、Co、Au矿床
图12-2 华北板块西南边缘构造与成矿谱系