已知L为圆周x^2+y^2=a^逆时针方向,若f ((x-y)dx+(x+4y)dy)/x^2+4?
对坐标的曲线积分,把 x^2+y^2=a^2 带入到上面错误,因这只考虑了边界。本题应用格林公式化成 ∫∫ -(x^2+y^2) dxdy, 用极坐标求出答案是 -πa^4/2。
取充分小的正数e,在单位圆内做椭圆x^2+4y^2=e^2,方向为逆时针方向,记为S+S包围区域为D,其长轴为e,短轴为e/2,面积为pi*e^2/2。
原积分=∫L Pdx+Qdy
=∫L并S- Pdx+Qdy --∫S- Pdx+Qdy 第一个用格林公式注意到ap/ay=aQ/ax
= 0+∫S+ Pdx+Qdy
=【∫S+ (x+4y)dy+(x--y)dx】/e^2 再用格林公式
=∫∫ D (1+1)dxdy/e^2
=2*D的面积/e^2
=pi。
格林公式含义:
在平面闭区域D上的二重积分,可通过沿闭区域D的边界曲线L上的曲线积分来表达;或者说,封闭路径的曲线积分可以用二重积分来计算。
如区域D不满足以上条件,即穿过区域内部且平行于坐标轴的直线与边界曲线的交点超过两点时,可在区域内引进一条或几条辅助曲线把它分划成几个部分区域,使得每个部分区域适合上述条件,仍可证明格林公式成立。
注意:对于复连通区域D,格林公式的右端应包括沿区域D的全部边界的曲线积分,且边界方向对区域D来说都是正向。
格林公式沟通了二重积分与对坐标的曲线积分之间的联系,因此其应用十分地广泛。