不定积分第二类换元法

第四题第六题... 第四题第六题 展开
 我来答
匿名用户
2018-12-10
展开全部
换元的根本目的是要将式子中原本的根号去掉。
比如:
被积函数含根式√(a^2-x^2),令 x = asint,源式化为 a*cost。
利用第二类换元法化简不定积分的关键仍然是选择适当的变换公式 x = φ(t)。此方法主要是求无理函数(带有根号的函数)的不定积分。由于含有根式的积分比较困难,因此我们设法作代换消去根式,使之变成容易计算的积分。
下面我简单介绍第二类换元法中常用的方法:
(1)根式代换:被积函数中带有根式√(ax+b),可直接令 t =√(ax+b);
(2)三角代换:利用三角函数代换,变根式积分为有理函数积分,有三种类型:
被积函数含根式√(a^2-x^2),令 x = asint
被积函数含根式√(a^2+x^2),令 x = atant
被积函数含根式√(x^2-a^2),令 x = asect
注:记住三角形示意图可为变量还原提供方便。
tllau38
高粉答主

2018-12-10 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2亿
展开全部
(4)

let
lnx= tanu
(1/x) dx = (secu)^2 du
∫dx/[x.lnx.√(1+(lnx)^2) ]
=∫(secu)^2 du/[tanu.secu ]
=∫(secu/tanu) du
=∫cscu du
=ln|√(1+(lnx)^2)/lnx - 1/lnx| +C
=ln|√(1+(lnx)^2) -1| -ln|lnx| +C
(6)
x^2+2x+3 = (x+1)^2 +2
let
x+1=√2 tanu
dx=√2 (secu)^2 du
∫(3x+2)/√(x^2+2x+3) dx
= (3/2) ∫(2x+2)/√(x^2+2x+3) dx -∫dx/√(x^2+2x+3)
=3√(x^2+2x+3) -∫√2 (secu)^2 du/[√2.secu]
=3√(x^2+2x+3) -∫ secu du
=3√(x^2+2x+3) -ln|secu + tanu | +C'
=3√(x^2+2x+3) -ln|√(x^2+2x+3) /√2 + (x+1)/√2 | +C'
=3√(x^2+2x+3) -ln|√(x^2+2x+3) + (x+1) | +C
本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
炼焦工艺学
2018-12-10 · TA获得超过1.7万个赞
知道大有可为答主
回答量:2.2万
采纳率:86%
帮助的人:2052万
展开全部

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
百度网友6c58549
2018-12-10 · 超过22用户采纳过TA的回答
知道答主
回答量:46
采纳率:46%
帮助的人:23.1万
展开全部


(*^▽^)/★*☆

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
156******48
2018-12-10
知道答主
回答量:86
采纳率:3%
帮助的人:7.7万
展开全部
等等我们还只教了第一类…
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 2条折叠回答
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式