求不定积分题 10
2个回答
展开全部
令 x = cosu
I = ∫(cosu)^3 u(-sinu)du/sinu = -∫(cosu)^3 udu
= -∫u[1-(sinu)^2]dsinu = -∫ud[sinu-(1/3)(sinu)^3]
= -u[sinu-(1/3)(sinu)^3] + ∫[sinu-(1/3)(sinu)^3]du
= -u[sinu-(1/3)(sinu)^3] - cosu + (1/3)∫[1-(cosu)^2]dcosu
= -u[sinu-(1/3)(sinu)^3] - cosu + (1/3)[cosu-(1/3)(cosu)^3] + C
= -u[sinu-(1/3)(sinu)^3] - (2/3)cosu - (1/9)(cosu)^3 + C
= -(1/3)(2+x^2)√(1-x^2)arccosx - (2/3)x - (1/9)x^3 + C
I = ∫(cosu)^3 u(-sinu)du/sinu = -∫(cosu)^3 udu
= -∫u[1-(sinu)^2]dsinu = -∫ud[sinu-(1/3)(sinu)^3]
= -u[sinu-(1/3)(sinu)^3] + ∫[sinu-(1/3)(sinu)^3]du
= -u[sinu-(1/3)(sinu)^3] - cosu + (1/3)∫[1-(cosu)^2]dcosu
= -u[sinu-(1/3)(sinu)^3] - cosu + (1/3)[cosu-(1/3)(cosu)^3] + C
= -u[sinu-(1/3)(sinu)^3] - (2/3)cosu - (1/9)(cosu)^3 + C
= -(1/3)(2+x^2)√(1-x^2)arccosx - (2/3)x - (1/9)x^3 + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫ x^3.arccosx/√(1-x^2 ) dx
= -∫ x^2.arccosx d√(1-x^2 )
=-x^2.√(1-x^2 ).arccosx +∫[ 2x.√(1-x^2 ).arccosx - x^2 ] dx
=-x^2.√(1-x^2 ).arccosx - (1/3)x^3 +2∫x.√(1-x^2 ).arccosx dx
=-x^2.√(1-x^2 ).arccosx - (1/3)x^3 -(2/3)∫arccosx d(1-x^2 )^(3/2)
=-x^2.√(1-x^2 ).arccosx - (1/3)x^3 -(2/3)(1-x^2 )^(3/2).arccosx
- (2/3)∫√(1-x^2 ) dx
=-x^2.√(1-x^2 ).arccosx - (1/3)x^3 -(2/3)(1-x^2 )^(3/2).arccosx
- (1/3)[ arcsinx+ x/(1+x^2) ] + C
//
let
x=sinu
dx =cosu du
∫√(1-x^2 ) dx
=∫ (cosu)^2 du
=(1/2)∫ (1+cos2u) du
=(1/2)[u+(1/2)sin2u] +C'
=(1/2)[ arcsinx+ x/(1+x^2) ]+ C'
= -∫ x^2.arccosx d√(1-x^2 )
=-x^2.√(1-x^2 ).arccosx +∫[ 2x.√(1-x^2 ).arccosx - x^2 ] dx
=-x^2.√(1-x^2 ).arccosx - (1/3)x^3 +2∫x.√(1-x^2 ).arccosx dx
=-x^2.√(1-x^2 ).arccosx - (1/3)x^3 -(2/3)∫arccosx d(1-x^2 )^(3/2)
=-x^2.√(1-x^2 ).arccosx - (1/3)x^3 -(2/3)(1-x^2 )^(3/2).arccosx
- (2/3)∫√(1-x^2 ) dx
=-x^2.√(1-x^2 ).arccosx - (1/3)x^3 -(2/3)(1-x^2 )^(3/2).arccosx
- (1/3)[ arcsinx+ x/(1+x^2) ] + C
//
let
x=sinu
dx =cosu du
∫√(1-x^2 ) dx
=∫ (cosu)^2 du
=(1/2)∫ (1+cos2u) du
=(1/2)[u+(1/2)sin2u] +C'
=(1/2)[ arcsinx+ x/(1+x^2) ]+ C'
更多追问追答
追问
你在干嘛呢?
你做的来吗?
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询