设n阶方阵A的特征值为λ1,λ2...λn计算3E-A的行列式

一点思路都没有高代大佬救救孩子... 一点思路都没有 高代大佬救救孩子 展开
 我来答
是万万啊c4
2018-12-09 · TA获得超过2885个赞
知道大有可为答主
回答量:2951
采纳率:83%
帮助的人:140万
展开全部
解:
(1)
由|E-A|=0,得|A-E|=0,得λ1=1
由|E+A|=0,得|A-(-E)|=0,得λ2=-1
由|3E-2A|=0,得|A-3/2·E|=0,得λ3=3/2
故A的特征值为:λ1=1,λ2=-1,λ3=3/2
(2)
行列式|A|=λ1λ2λ3=1×(-1)×3/2=-3/2
追问
这不是我问的吧
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
创远信科
2024-07-24 广告
介电常数,简称ε,是衡量材料在电场中电介质性能的重要物理量。它描述了材料对电场的响应能力,定义为电位移D与电场强度E之比,即ε=D/E。介电常数越大,材料在电场中的极化程度越高,存储电荷能力越强。在电子和电气工程领域,介电常数对于理解和设计... 点击进入详情页
本回答由创远信科提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式