假设检验
2020-01-19 · 技术研发知识服务融合发展。
(一)假设检验的基本思想
统计假设检验就是为了推断某个问题,事先做出一种假设。然后用一个实测样本数据计算出某一个适合的、已知其分布的统计量,并通过查表得出其相应的临界值。再用实测样本数据计算出来的关于统计量与其临界值进行比较,从而得出肯定(接受)原假设或否定(拒绝)原假设的结论,达到统计推断之目的,下面举例说明。
[例8-4]在某测区的海西期第二阶段中粗粒黑云母花岗岩(
解:假定这批γ照射量率数据都服从正态分布。此例中,300个数据是很大的样本,可以把它看成总体,故可用300个数据的平均数与标准差当作总体的均值与标准差,即μ=35γ,σ=8γ,80个观测数据仍看成是样本。由于样本标准差s=8.2γ与总体标准差相差甚小。因此,只需检验样本平均数
(1)假设H0
放射性勘探技术
其中:μ=35(γ),σ=8(γ),
(2)构造一个统计量u
先将样本平均数标准化,即
放射性勘探技术
式(8-21)中的统计量u服从标准正态分布,即u~N(0,1)。
(3)确定临界值
给定信度α=0.05,则由附录一查出F(u)=1-α/2=0.975所对应的uα=1.96,故有
P{-1.96<u<1.96}=1-α=0.95
即
放射性勘探技术
或
放射性勘探技术
其中33.26γ与36.74γ是临界值,而区间(33.26,36.74)是肯定域。区间以外为否定域。这就是说,样本平均数
(4)计算实测样本平均数
由于实测样本平均数
(二)差异的显著性与信度(显著性水平)
上例的统计推断性结论是在信度(显著性水平)α=0.05的条件下做出的。如果将信度α定得小一些,那么做出的统计性结论就有可能改变。比如α=0.01,由附录一可查出F(u)=1-α/2=0.995所对应的u临界值uα=2.58,故有
放射性勘探技术
或
放射性勘探技术
在这种情况下,临界值为32.7γ与37.3γ,故区间(32.7,37.3)为肯定域。而实测样本
显而易见,信度α如何选择,直接影响到差异是否显著的结论。可见,任何差异是否显著的推断都是在一定的信度(显著性水平)α下做出的。α定得越大,肯定域就小,但推断的可靠性差(即置信概率小)。反之,α定得愈小,肯定域就愈大,推断的可靠性强(置信概率大)。放射性物探工作中所要进行的统计假设检验,一般将信度α定为0.05或0.01较为恰当,此时置信概率分别为95%与99%。
(三)统计假设检验的分类
统计假设检验可分为两大类,即参数性方法与非参数性方法,就是假定总体的分布型式已知(经常假定为正态分布),只要对参数进行检验即可。非参数性方法,则不管总体的分布如何,都能应用。
参数性方法又可分为大样本与小样本推断两种。一般当n>30~50时,可称为大样本,凡属大样本一律可按正态分布处理。
(四)分布型式的检验
放射性物探工作中经常要统计各种底数。进行底数统计之前,就要对观测数据进行分布型式的检验,以确定观测数据服从何种概率分布,并采用相应的底数与标准差的计算方法。当然根据频率分布直方图的形状也大致可以看出其分布型式,但这是不严格的,需要进行检验。检验的方法很多,下面介绍几种方法:
1.偏度、峰度检验法
这是一种检验概率分布是否属于正态分布的参数性方法,要求有大样本(n>100)。此种检验方法中要用的两个统计量CS(偏度)与CE(峰度),其计算公式已在本项目学习任务一中给出。
当总体服从正态分布时,若样本为大样本(n>100),则统计量CS、CE近似服从正态分布,即CS~N(0,6/n),CE~N(0,24/n)。
现以本项目学习任务一某花岗岩体的228个γ测量数据为例,说明如何用偏度系数和峰度系数法检验分布型式的方法。
[例8-5]用偏度系数和峰度系数法检验表8-1中某地区γ普查数据是否服从正态分布,给定信度α=0.05。
(1)假设H0
该地区γ照射量率数据服从正态分布。又因样本容量n=228,为大样本,故
CS~N(0,6/228),CE~N(0,24/228)
将这两个参数标准化,有
放射性勘探技术
经过标准化变换以后,公式(8-22)和公式(8-23)都服从标准正态分布N(0,1)。
(2)计算标准化后的概率区间
在α=0.05下,查得F(u)=1-α/2=0.975所对应的uα=1.96,故有
放射性勘探技术
即
P{-0.32<CS<0.32}=0.95
故CS的临界值为-0.32和0.32,即区间(-0.32,0.32)为肯定域,其外为否定域。
同样对于CE,有
放射性勘探技术
即
P{-0.64<CE<0.64}
故CE的临界值为-0.64和0.64,即区间(-0.64,0.64)为肯定域,其外为否定域。
(3)计算样本的CS和CE
根据实测数据可用列表法求取偏度系数CS和峰度系数CE,见表8-5。
表8-5 某地区放射性测量γ射线照射量率(γ)偏度系数和峰度系数计算表
续表
根据表8-5计算CS和CE,步骤如下:
放射性勘探技术
三阶中心矩(M3)和四阶中心矩M4计算如下:
放射性勘探技术
于是
放射性勘探技术
(4)比较
将由实测样本计算的CS和CE与其临界值进行比较,可见样本的CS=0.0903和CE=-0.5921都落在肯定域内,故肯定原假设,认为该地区的γ射线照射量率符合正态分布。
2.正态概率格纸检验法
显然上述检验方法比较麻烦,计算工作量较大,而且要求是大样本。在本项目学习任务二曾指出,在正态概率格纸上做出的正态分布的累积概率曲线为一条直线。因此便可根据画在正态概率格纸上的实测样本数据的诸(xi,Fi)点是否基本在一条直线上,来检验该批数据是否符合正态分布。其中xi为实测样本分组数据的组上限,Fi为其累积频率。这种检验方法称为正态概率格纸检验法。
下面仍然以某地区花岗岩228个γ照射量率数据为例,说明其检验方法。
[例8-6]使用表8-1的数据,用正态概率纸法检验某地区γ普查数据是否符合正态分布。
解:以表8-1中的累积频率为纵坐标,将数据分组值(组上限)为横坐标,在正态概率格纸上打点,即A(21.5,1.32)、B(25.5,7.46)、C(29.5,20.64)、D(33.5,41.23)、E(37.5,64.64)、F(41.5,82.64)、G(45.5,94.74)、H(49.5,98.25);然后用直尺画一条直线,尽可能将各点联结起来,如图8-9所示,其做法与用累积频率展直线法求正常值的做法相同。
由图8-9可见,这些点基本落在一条直线上,因此该批数据服从正态分布,这与用偏度、峰度检验法得出的结论相同。由图8-9还可见到,有些点与直线有些偏差,这是允许的,但是偏差不能太大。偏差太大,则不一定属于正态分布。一般说来,中间的点(即靠近累积频率为50%横线附近的点)偏差不能太大,两端的点偏差可以适当大一点。究竟偏离多远可认为是允许的,需绘制一定信度α下的临界曲线,见图5-5所示,以此作为衡量的标准。临界值曲线的画法请参阅有关书籍。
3.χ2检验法
χ2检验不但可以检验正态分布,还可以检验泊松分布、二项分布、负二项分布、指数分布等的分布型式。
(1)理论原理
这是在总体x为未知时,根据它的n个观测值x1,x2,…,xn来检验关于总体分布的假设
H0:总体x的分布函数为F(x) (8-24)
的一种方法。
注意,若总体分布为离散型,则假设式(8-24)相当于
H0:总体x的分布律为P{x=ti}=pi(i=1,2,…) (8-25)
若总体分布函数为连续型,则假设式(8-24)相当于
H0:总体x的概率密度为f(x) (8-26)
式(8-24)~式(8-26)是χ2检验的理论模型表达式。
在用下述χ2检验法检验假设H0时,要求在假设H0下F(x)的分布型式及其参数都是已知的。但实际上参数往往是未知的,这时,需要先用极大似然法估计参数,然后做检验。
χ2检验法的基本思想是:把随机实验结果的全体S分为k个互不相容事件A1,A2,…,Ak(A1∪A2∪…∪Ak=S,AiAj=ϕ,i≠j;i,j=1,2,…,k)。于是,在假设H0下,我们可以计算理论频率pi=P(Ai)(i=1,2,…,k)。显然,在n次试验中,事件Ai出现的频率
放射性勘探技术
作为检验理论(即假设H0)与实际符合的尺度。并证明了如下的定理:若n充分大(n≥50),则不论总体属于什么分布,统计量式(8-27)总是近似地服从自由度为k-r-1的χ2分布。其中,r是被估计参数的个数。
于是,若在假设H0下算得皮尔逊统计量的值,即式(8-27),有
放射性勘探技术
则在显著性水平α下拒绝H0;若式(8-28)中不等号反向,就接受H0。
χ2检验的具体步骤是:
把实轴分为k个互不相容的区间[αi,αi+1](i=1,2,…,k),其中αi,αi+1可分别取-∞,+∞。区间的划分方法视具体情况而定。
其次,计算概率
pi=F(αi+1)-F(αi)=P{αi<x≤αi+1} (8-29)
此处,F(x)由式(8-29)确定。然后算出pi与样本容量n的乘积npi称为理论频数。
同时,计算样本观察值x1,x2,…,xn在区间(αi,αi+1]中的个数
然后,将
χ2检验法是在n无限增大时推导出来的,所以在使用时必须注意n要足够大,以及npi不太小这两个条件。根据经验,要求样本容量n不小于50,当n刚刚大于50附近时,npi最好在5以上,在n大于100时npi最好取10以上,否则应当适当的合并区间(或Ai),使npi满足这个要求。特别是在边部小概率事件下要进行适当地并组,这样可以有效的压低边部“干扰”,突出数据中部的“有用信号”。
下面通过实例来说明检验的过程。
(2)应用实例
[例8-7]试用χ2检验的办法检验某地区闪长岩钍含量是否服从对数正态分布(取α=0.05)。原始数据单位为10-6,取常用对数以后的统计结果见表8-6。
表8-6 某地区闪长岩钍含量对数值统计表
解:为方便起见,根据表8-6所整理的结果来做检验。因参数都是未知的,故应用极大似然估计法估计μ、
放射性勘探技术
注意:这里的
估计
放射性勘探技术
注意,公式中的n=110,为样品容量;k为分组数,表示并组后的组数。这里对第1~3和13~15组进行了并组,故k=11。对于分组时两头的小组实行并组是为了有效地减小偶然误差。
所以,我们要检验的假设为
H0:x~N(0.7509,0.24842)
为便于计算npi,应先做变换u=(x-0.7509)/0.2484。化x为标准正态变量u,与正态分布概率纸检验法一样,查出各个u之下的累积频率,算出区间频率、频数,这些都是理论值。如表8-7所示。
表8-7 某区闪长岩钍含量对数正态分布χ2检验表
标准正态分布表中查出的是累积频率F(u);每一个区间频率为该区间累积频率与上一个区间累计频率之差;n=110,为样品容量,而非分组组数,故npi表示理论频数;
由于并组后组数k=11,估计了两个参数(
放射性勘探技术
故在水平α=0.05下接受H0,认为该地区岩石钍含量符合对数正态分布,并且钍含量对数
通过上例可见,用χ2检验法(或其他检验方法)得到的结果往往较概率纸精确。特别是,有的检验法(如χ2检验法)能控制犯第一类错误的概率α,这是概率纸所做不到的。但概率纸使用方便,无须太多的计算,因此,概率纸常用来初步估计总体的分布类型及参数的一次近似之用。然后用χ2检验法(或距离计算法、偏度系数和峰度系数检验法等)进一步做精确的检验。
(五)平均数的对比(U检验和t检验)
由本项目学习任务二正态分布的介绍,可知正态分布有两个重要参数,一个是均值μ,另一个是标准差σ。当μ与σ确定后,正态分布N(μ,σ)就完全确定了;且在一般情况下,标准差σ比较稳定。要检验两个正态分布是否相同,或者说,两个正态分布的样本是否属于同一总体,只要对均值μ做检验,这就是平均数对比的实质。放射性物探工作中要经常遇到某些元素的含量,放射性γ照射量率等的对比问题,仪器的“三性”检查工作中也要碰到类似的问题。
设从两个正态总体N(μ1,
1.大样本平均数的对比——U检验
当两个样本为大样本,即n1>30,n2>30时,由本任务可知,两样本的平均数
U检验的步骤如下:
(1)假设H0
μ1=μ2,于是
放射性勘探技术
将
放射性勘探技术
那么新变量U服从标准正态分布,即U~N(0,1),U就是检验中要用的统计量,可查F(u)表(见附录一),故称为U检验。
(2)确定临界值
若选定信度α=0.05,则从F(u)反查u值表中根据F(u)=1-
(3)比较
计算实测样本的U值,与临界值uα进行比较。若|U|>uα,则否定原假设;若|U|<uα,就肯定原假设。
为了计算实测样本的U值,必须知道总体的标准差σ。若σ已知,则无论大、小样本都可用U检验进行假设检验。若σ未知,则要用两样本标准差s1、s2的加权平均值来估计总体标准差σ,即用
放射性勘探技术
代替σ,于是
放射性勘探技术
式(8-31)就是计算的U值,下面举例说明。
[例8-8]在某一斑状黑云母花岗岩地段进行放射性γ照射量率测量。测得169个数据(n1),平均照射量率
解:经过分布型式检验,两样本γ照射量率数据均服从正态分布,两样本标准差又近似相等,且都是大样本。显然可用U检验对两地段的平均数进行对比。将数据代入公式(8-31),可算出实测样本U值,即
放射性勘探技术
取信度α=0.05,查附录一,得U的临界值uα=1.96。而实测样本U=9.034>uα=1.96,故否定原假设H0,认为斑状黑云母花岗岩地段与其相邻地段不是同一总体,或者说,不是属于同一岩性。后经地质调查证实岩性为细粒二云母花岗岩,这两种花岗岩的结构不同,成分不同,侵入时代也不相同。
2.小样本平均数的对比——t检验
当两个样本中,只要有一个为小样本时,即n1与n2中有一个小于30,用样本方差s2去估计总体方差时,要用无偏估计量,即
放射性勘探技术
在这种情况下得不出新变量u服从标准正态分布的结论。因此也就不能用上述U检验的方法进行检验。用两个样本方差
放射性勘探技术
来代替σ,这时要构造一个新的统计量t。t不像两个大样本的情况下要服从标准正态分布,而服从自由度f=n1+n2-2的t分布,或称学生(Student)分布。
当给定了信度α,如α=0.05,且自由度f=n1+n2-2为已知时,可在t分布临界值tα表中(见附录三)查出临界值tα。其否定域为|t|≥tα。
[例8-9]在同一地点、相同条件下用两台γ能谱仪进行测量。第一台仪器测量10次,测得铀含量(10-6)x1分别为3.5、3.2、3.0、3.1、3.2、3.3、3.3、3.2、3.1、3.2,平均铀含量
解:因为
1)假设H0,两台仪器读数的均值相等,即
μ1=μ2
2)计算实测样本统计量t:
放射性勘探技术
3)比较:
若取信度α=0.05,查t分布表(见附录三),其自由度f=n1+n2-2=20时,查得t的临界值tα/2=2.08。因为|t|=2.285>tα/2=2.08,所以否定原假设H0,μ1≠μ2,认为两台仪器读数的平均值差异显著,故两台仪器的一致性不好。
(六)方差对比——F检验
在平均数对比中,检验两个总体均值是否相同(无论大样本或小样本)之前,都应先假定被检验的两个总体服从正态分布,且方差相等。如果不能肯定方差基本相等则需先进行方差检验。只有当方差无显著性差异后,方可进行平均数的对比;否则,就不必进行平均数对比了,因为方差差异显著,已可认为两者不是同一总体了。
假设从两个正态总体N(μ1,
放射性勘探技术
通过对比两样本方差
放射性勘探技术
统计量F服从第一自由度f1=n1-1、第二自由度f2=n2-1的F分布。当给定信度α后。且第一自由度f1与第二自由度f2为已知时,可从F分布临界值表中(见附录四)查出临界值Fα。本来当信度为α时,F检验的否定域为左右两边各取面积为α/2的两部分(图8-10)。但为了制表省略起见,F分布临界值表中,往往只给出F>l的右边临界值。因此,当给定了信度α,并已知第一自由度f1与第二自由度f2的情况下,查附录四时实际得出的是Fα/2值,这样在计算样本方差比F值时,就要使得F永远大于1。为此总是把两方差
图8-10 F分布概率密度曲线图
[例8-10]用例8-9中两台仪器在同一地点观测的数据为准,用F检验的办法检验这两台能谱仪的方差有无显著差异。已知α=0.10。
解:设
1)假设H0:
2)计算方差比:
第一台仪器10次测量和第二台仪器12次测量的均方差分别是s1=0.137×10-6和s2=0.162×10-6,直接代入公式(8-33)中,得
放射性勘探技术
3)确定临界值Fα:
已知α=0.10,第一自由度f1=10-1=9,第二自由度f2=12-1=11,查附录四,得Fα/2=F(0.05)=2.27。
4)比较:
由于两个样本的方差比F=1.398<Fα=2.27,落在肯定域内,故肯定原假设H0:
2020-10-27 广告