黔西滇东地区煤储层渗透性特征及其地质控制因素研究

 我来答
中地数媒
2020-01-18 · 技术研发知识服务融合发展。
中地数媒
中地数媒(北京)科技文化有限责任公司奉行创新高效、以人为本的企业文化,坚持内容融合技术,创新驱动发展的经营方针,以高端培训、技术研发和知识服务为发展方向,旨在完成出版转型、媒体融合的重要使命
向TA提问
展开全部

曾家瑶1,2 吴财芳1,2

(1.中国矿业大学资源与地球科学学院江苏徐州221008 2.煤层气资源与成藏过程教育部重点实验室江苏徐州221008)

摘要:煤储层渗透性是制约煤层气开发的重要因素之一。本文通过对黔西-滇东地区煤储层渗透性特征的深入研究,结合大量煤田地质勘探资料,阐明了研究区控制渗透率的主要地质因素。研究表明:整个研究区自东向西渗透率具有逐渐降低的趋势,黔西织纳煤田渗透率远高于其他区域。在影响渗透率的多个因素中,区域构造应力、煤层裂隙发育状况、煤层埋深、煤层厚度等对煤层渗透性有着重要的控制作用。

关键词:煤层 渗透率 构造应力 煤层埋深 煤层厚度

国家科技重大专项项目 ( 2011ZX05034) 、国家973 煤层气项目 ( 2009CB219605) 、国家自然科学基金重点项目( 40730422) 及青年科学基金项目 ( 40802032) 资助。

作者简介: 曾家瑶 ( 1987 ) ,女,贵州省大方县人,就读于中国矿业大学 ( 徐州) 资源与地球科学学院,硕士,研究方向为煤层气勘探与开发。通讯地址: 江苏省徐州市中国矿业大学南湖校区研一楼 5 单元 302. Tel:18952246792,E-mail: jiayaohhaha@ 126. com

Study on Characteristics of coal reservoir Permeability and Factors of Geological Controlling in Western Guizhou-Eastern Yunnan Area

ZENG Jiayao1,2WU Caifang1,2

( 1. School of Resource and Earth sciences,China University of Mining and Technology, Xuzhou Jiangsu 221008,china 2. Key laboratory of CBM Resource and Reservoir Formation Process,Xuzhou Jiangsu 221008 china)

Abstract: Coal seam permeability is one of the key factors that restrict the development of coalbed methane ( CBM) . This paper clarifies the main geological factors which influence the coal seam permeability of Western Guizhou Province-Eastern Yunnan Province by analyzing the characteristics of coal seam permeability and referring to geological exploration data of coal field. According to the research results,the permeability of the whole area has a declining tendency from East to West and the permeability of Zhina Coal Mine in Western Guizhou is dramatically higher than other areas. Among all factors affecting permeability,regional tectonic stress,coal seam fractures, coal seam buried depth and coal seam thickness are of significant controlling effects.

Keywords: coal seam; permeability; tectonic stress; coal seam buried depth; coal seam thickness

引言

黔西地区煤层气资源丰富,主要赋存于六盘水煤田和织纳煤田的向斜构造,其中甲烷含量超过8m3/t的“富甲烷”区资源量占贵州省资源总量的90%以上。滇东地区煤层气资源量为4500亿m3,占云南省煤层气资源总量的90%。

煤储层的渗透率是衡量煤层气可开采性最重要的指标之一(秦勇等,2000),在煤层气气源已查明的前提条件下,煤储层渗透率又是制约煤层气资源开发成败的关键因素之一。煤储层在排水降压过程中,随着煤层气的解吸、扩散和排出,有效应力效应、煤基质收缩效应和气体滑脱效应使煤储层渗透性呈现动态变化。深入分析渗透率分布特征及其地质控制因素,对于煤层气有利区带优选及煤层气开发措施优化具有重要的理论意义和现实意义。

1 煤层渗透率特征

1.1 煤层试井渗透率

据统计,贵州省境内目前有9口煤层气井19层次的试井数据(表1)。织纳煤田两口煤层气参数井位于比德向斜化乐勘探区,测试煤层埋深浅于600m,试井渗透率较高,在0.1074~0.5002mD之间,平均0.2797mD,属于中渗透率煤层,具有商业性开发的有利条件。六盘水煤田7口煤层气探井,全部分布在东南部的盘关向斜和青山向斜,煤层试井渗透率0.0004~0.4800mD,多低于0.02mD,平均0.0741mD,远远低于织纳煤田,属于特低渗透率煤层。

表1 黔西地区煤层气井试井成果

续表

1.2 煤层渗透率分布特征

根据表1统计结果,取埋深浅于650m的测试煤层为基准,黔西(乃至滇东)地区上二叠统煤层渗透率区域分布规律十分明显,总体上由东向西趋于降低。例如,织纳煤田比德向斜煤层试井渗透率平均为0.2797mD,六盘水煤田盘关向斜金竹坪勘探区和青山向斜马依东勘探区煤层渗透率在0.15mD左右,进一步向西至滇东恩洪、老厂、宣威等向斜或煤田渗透率平均值只有0.0904mD。这一区域分布规律,一方面是聚煤期后构造变动对煤层破坏程度的强弱不同的结果,另一方面与区域现代构造应力场对煤层裂隙的挤压封闭程度有关。

由于煤储层埋藏深度与相应地层有效应力存在相关性,埋藏越深,有效应力越大,渗透率越低(傅雪海等,2003;周维垣,1990),在层位上,煤层渗透率似乎没有明显的分布趋势(表1)。例如,对于化乐勘探区1602井、亮山勘探区QH1井、金竹坪勘探区GM2井和马依东勘探区MY01井,渗透率具有随煤层埋深的增大而减小的趋势。而在马依东勘探区MY03井、亮山勘探区QH3井和化乐勘探区3603井,煤层层位降低,试井渗透率趋于增高。

2 影响煤层渗透率的地质因素

煤层渗透率的影响因素有许多,如构造应力场、煤层埋深、煤储层厚度,煤储层压力,煤体结构、煤岩煤质特征、煤级及天然裂隙都不同程度地影响煤层渗透率,可以是有多因素综合作用的结果,也可以是某一因素起主要作用。

2.1 构造应力场对煤层渗透率的影响

黔西滇东地区基底交叉断裂控制盖层中方向各异的褶皱断裂带,组合为弧形、菱形和三角形等各种构造型式,构成统一的区域构造格局(图1)。其中,织纳煤田位于百兴三角形构造,六盘水煤田的构造主体是发耳菱形构造和盘县三角形构造,构造应力场极其复杂(图1)。对于三角形构造,差应力值在3个顶角处最大,边部次之,向三角形内部递减,构造变形在角顶和边部强、中部弱,这与织纳煤田煤体结构区域分布规律一致。由此推测,六盘水煤田中—南部可能发育两个煤体结构相对完整的中心地带,分别是中部发耳菱形构造区和南部盘县三角形构造区的中央地带。其中,发耳菱形构造区构造隆升相对强烈,含煤地层保存条件较差,只有零星分布。因此,黔西地区煤层渗透性较好的地带可能位于两个地带:一是织纳煤田中部,如水公河向斜、珠藏向斜、牛场向斜等区域;二是六盘水煤田南部的盘关向斜中央地带,大致位于盘县县城以北。

黔西—滇东地区煤层物性与地应力状况关系密切,尤其是煤体结构、煤层渗透率和煤储层压力,地应力场则受控于区域构造背景。这种控制作用,具体表现在地应力梯度的高低,这是造成煤层渗透率区域分布差异的重要地质原因。

中国煤层气技术进展: 2011 年煤层气学术研讨会论文集

图1 贵州西部构造格架示意图引自乐光禹等,1994)|1—Ⅰ级断块边界(F1,垭都紫云断裂带;F2,石阡安顺断裂带);2—Ⅱ级断块边界;3—盖层褶皱断裂带;4—构造盆地;5—构造隆起;6—省界

Enever等(1997)通过对澳大利亚煤层渗透率与有效应力的相关研究发现,煤层渗透率变化值与地应力的变化呈指数关系(周维垣,1990):

K/K0=e3CΔδ

式中:K/K0为指定应力条件下的渗透率与初始渗透率的比值;C为煤的孔隙压缩系数;Δδ为从初始到某一应力状态下有效应力。

据黔西—滇东18口煤层气井36层次试井资料,地应力场中的最小主应力(闭合压力)梯度降低,煤层渗透率随之增高,两者之间呈相关性良好的负幂指数关系。另外,渗透率随着地应力和煤层原生结构的破坏程度的增大而降低。区内最小主应力梯度从东往西增大,在织纳煤田比德向斜为17~21kPa/m,六盘水煤田青山向斜为12~27kPa/m,六盘水煤田盘关向斜为21~33kPa/m,滇东老厂矿区为17~25kPa/m,滇东恩洪向斜为20~34kPa/m。越靠近康滇古陆方向,最小主应力越高。

2.2 煤层埋藏深度对渗透率的影响

岩层的密度远大于孔隙中流体的密度,致使垂直应力的增加幅度较大,傅雪海等(2001)研究认为煤储层渗透率具有随埋深加大呈指数减小的趋势。这也从另一方面反映了地应力对煤储层渗透率的影响,即随着埋藏深度的增加上覆地层的重力对裂隙的压迫作用增强,使有效应力增加,反而不利于煤储层的裂隙发育,从而渗透性降低。

黔西滇东地区煤层渗透率与埋藏深度之间关系尽管较为离散,但负幂指数趋势十分明显;同时,在测试煤层相似埋深(500~700m)的情况下,渗透率同样具有由东往西降低的趋势(图2)。渗透率与煤层埋深之间负幂指数关系的转折深度在600m左右,对应的渗透率约0.05mD。煤层渗透率一旦低于0.05mD,则渗透率与埋藏深度之间就没有确定的关系,指示着渗透率极低不仅是与煤层的埋深有关,也与其他因素有关,而且其他因素对煤层渗透性的影响很大。导致煤层气地面开发难度大,如盘关向斜和滇东恩洪向斜。青山向斜则呈现相反的趋势,随着埋深的增加,煤层渗透率却呈增大的趋势,矿区煤层甲烷含量在平面上有一定的分布规律,表现出“北高南低、东高西低、深高浅低”的总体趋势(彭伦等,2010)。这一点,是由于青山向斜地区与外界水力联系弱,因受水力封闭和水力封堵,煤层含气量高,加之煤体结构较完整,渗透性较好,具有良好的煤层气开发潜力。

图2 黔西—滇东地区煤层渗透率与埋藏深度之间关系

2.3 煤层渗透率与储层压力的关系

煤层埋深增大的情况下,垂向地应力导致储层压力增大,有效应力随之显著减小,煤体发生弹性膨胀而致使裂缝宽度减小,渗透性同时降低。研究区煤储层压力与煤层渗透率呈负对数关系,这与储层压力受控于煤层埋深有着必然的联系。比如,在储层压力为5~7MPa之间,煤层渗透率的分布比较离散,没有特定的趋势(图3)。

图3 黔西—滇东地区煤层渗透率与煤储层压力关系

2.4 煤层厚度对渗透率的影响

秦勇等(2000)发现,华北石炭二叠系煤层以渗透率0.5mD为界,煤层厚度与渗透率之间表现为两段趋势相反的分布规律。当渗透率小于0.5mD时,煤层厚度增大,渗透率总体上增高。当渗透率大于0.5mD时,渗透率随煤厚的增大反而降低。

就黔西地区渗透率大于0.03mD的煤层来说,渗透率随煤层增厚呈现出减小的趋势(图4),这与煤厚和裂隙发育密度之间的负相关性有关,泥炭聚集期各种地质因素的综合作用起着重要控制作用。然而,渗透率小于0.03mD时的煤层厚度与渗透率之间成正相关关系,用上述原理显然无法解释其原因,表明其他因素起着更为重要的控制作用,如煤体结构、裂隙开合度以及煤级和煤岩组成控制之下的裂隙发育密度等。

2.5 其他因素对渗透率的影响

渗透率比较小时,煤层埋深、煤储层压力和煤层厚度与渗透率的关系都不是简单的线性关系,这表明煤储层渗透率还受其他因素的控制,比如煤层的孔、裂隙结构和煤体结构等。

图4 黔西地区煤层渗透率与煤层厚度的关系

研究区内平面上自东北向西南方向孔隙度呈现出先增加后减少而后再增加的双峰型特征,煤储层孔隙度发育偏低,渗透率随孔隙度的增加而增加,孔隙度受区域变质影响显著,随最大镜质组反射率的增大先增长后缓慢下降。盘关向斜煤储层孔隙发育较好,有利于煤层气的储集和渗流,其次为织纳煤田部分储层发育较好,大部分煤储层微小孔极为发育非常有利于煤层气的储集,但孔隙连通性较差不利于煤层气的渗流运移;格目底向斜及滇东地区煤储层孔隙发育相似,区域内孔隙类型多、差异大、非均质性强,储集性相对较好,但整体不利于煤层气渗流运移。

贵州省境内不同煤田的煤体结构差别极大。总体来看,六盘水煤田煤体结构破碎,如盘关向斜以构造煤为主;织纳煤田煤体结构相对完整,如水公河向斜多数煤层原生结构完好。整体结构的差异是织纳煤田煤层渗透率远高于六盘水煤田的重要原因。

3 结论

综上所述,黔西滇东地区煤层渗透率的大小受到构造应力、煤层埋深、煤储层压力和煤层厚度等多个因素的影响,其中构造应力是影响煤层渗透率的最主要因素。

(1)煤层渗透率随地应力场中的最小主应力梯度的减小而增大。

(2)黔西滇东地区煤层渗透率随煤层埋藏深度的增加而呈指数降低。受此影响,煤储层压力与煤层渗透率呈负对数关系。

(3)在构造应力对煤储层渗透率总体控制之下,存在着裂隙、储层压力、煤层厚度、水文地质条件等多种因素的叠加,在构造应力相似的条件下,其他因素起着更重要的作用。

参考文献

傅学海,秦勇等.2001.沁水盆地中—南部煤储层渗透率主控因素分析[J].煤田地质与勘探,29(3):16~19

傅雪海,秦勇,姜波等.2003.山西沁水盆地中南部煤储层渗透率物理模拟与数值模拟[J].地质科学,38(2):221~229

林玉成.2003.滇东地区煤层气资源及富集规律[J].云南煤炭.1:53~57

彭伦,刘龙乾等.2010.青山矿区水文地质控气特征研究[J].煤,19(6):1~3

秦勇,叶建平,林大扬等.2000.煤储层厚度与其渗透率及含气性关系初步探讨[J].煤田地质与勘探,28(1):24~27

周维垣.1990.高等岩石力学[M].北京:水利电力出版社,158~214

R. E. Enever,A. Henning,The Relationship Between Permeability and Effective Stress for Australian Coal and Its Implica- tions with Respect to CoalbedMethane Exploration and ReservoirModeling [C] . Proceedings of the 1997 International Coalbed Methane Symposium. Alabama: The University of Alabama Tuscalcosa,1997. 13 ~ 22

石经理
2024-04-02 广告
关于产品具体详情可以咨询下北京中震建筑科学研究院有限公司。北京中震建筑科学研究院有限公司是具有独立法人资格的专业消能减震产品研发、生产、销售、咨询机构。北京中震自成立以来,始终专注于建筑消能减震领域。公司研发了一系列消能减震相关产品,致力于... 点击进入详情页
本回答由石经理提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式