高数不定积分用原函数的概念求解

这道题怎么做的... 这道题怎么做的 展开
 我来答
小子子子行F
2020-03-10 · TA获得超过2034个赞
知道小有建树答主
回答量:2591
采纳率:62%
帮助的人:218万
展开全部
这是高等数学里的基本概念。
原函数:已知函数f(x)是一个定义在某区间的函数,如果存在函数F(x),使得在该区间内的任一点都有dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。对f(x)进行积分既可以得到原函数F(x),对F(x)微分就可以得到f(x)。
不定积分:相对定积分而言,其最后解得的表达式中存在不定的一个常数。对sinx+c进行微分得到cosx,其中c为任意常数,若是对cosx进行不定积分就是得到sinx+c。若是进行定积分则是没有不定常数,则在题目中会给出限定条件,例如原函数在x=0时值为1,则对cosx进行积分得到sinx+c,x=0时sinx+c=1,所以c=1,所以cosx的定积分为sinx+1。.
这样讲明白不?不明白可以给我留言~~~~
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式