1个回答
展开全部
x=cost,dx=-sintdt,x∈[-1,1],t∈[0,π],t=arccost,
y'=dy/dx=dy/dt.dt/dx=y'(t)/x'(t)=-y'(t)/sint=-y'(t)csct;
y''=dy'/dx=dy'/dt.dt/dx=-[y''(t)sint-y'(t)cost]/sin²t.(-csct)
=[y''(t)sint-y'(t)cost]/sin³t
=y''(t)csc²t-y'(t)cottcsc²t
代入:
(1-cos²t)[y''(t)csc²t-y'(t)cottcsc²t]-cost[-y'(t)csct]+y(t)=0
sin²t[y''(t)csc²t-y'(t)cottcsc²t]-cost[-y'(t)csct]+y(t)=0
y''(t)-y'(t)cott+y'(t)cott+y(t)=0
y''(t)+y(t)=0
x=0,t=π/2
特征方程r²+1=0,r=±i,y(t)=C1cost+C2sint;
y'(t)=-C1sint+C2cost
y''(t)=-C1cost-C2sint
y(π/2)=C2=1
y'(x)=y'(t)/(-sint)=-y'(t)/sint
y'(0)x=-y'(π/2)/sin(π/2)=C1=2,C1=2
y=2cost+sint
=2x+√(1-x²)
x=0,y=1
y'=2+(1/2)(-2x)/√(1-x²)
=2-x/√(1-x²)
x=0,y'=2。
y''=-[√(1-x²)-x(1/2)(-2x)/√(1-x²)]/(1-x²)
=-[(1-x²)+x²]/√(1-x²)³
=-/√(1-x²)³
(1-x²)y''-xy'+y
=-(1-x²)/√(1-x²)³-x[2-x/√(1-x²)]+2x+√(1-x²)
=-1/√(1-x²)-2x+x²/√(1-x²)+2x+√(1-x²)
=-(1-x²)/√(1-x²)+√(1-x²)
=-√(1-x²)+√(1-x²)
=0
满足方程。
y'=dy/dx=dy/dt.dt/dx=y'(t)/x'(t)=-y'(t)/sint=-y'(t)csct;
y''=dy'/dx=dy'/dt.dt/dx=-[y''(t)sint-y'(t)cost]/sin²t.(-csct)
=[y''(t)sint-y'(t)cost]/sin³t
=y''(t)csc²t-y'(t)cottcsc²t
代入:
(1-cos²t)[y''(t)csc²t-y'(t)cottcsc²t]-cost[-y'(t)csct]+y(t)=0
sin²t[y''(t)csc²t-y'(t)cottcsc²t]-cost[-y'(t)csct]+y(t)=0
y''(t)-y'(t)cott+y'(t)cott+y(t)=0
y''(t)+y(t)=0
x=0,t=π/2
特征方程r²+1=0,r=±i,y(t)=C1cost+C2sint;
y'(t)=-C1sint+C2cost
y''(t)=-C1cost-C2sint
y(π/2)=C2=1
y'(x)=y'(t)/(-sint)=-y'(t)/sint
y'(0)x=-y'(π/2)/sin(π/2)=C1=2,C1=2
y=2cost+sint
=2x+√(1-x²)
x=0,y=1
y'=2+(1/2)(-2x)/√(1-x²)
=2-x/√(1-x²)
x=0,y'=2。
y''=-[√(1-x²)-x(1/2)(-2x)/√(1-x²)]/(1-x²)
=-[(1-x²)+x²]/√(1-x²)³
=-/√(1-x²)³
(1-x²)y''-xy'+y
=-(1-x²)/√(1-x²)³-x[2-x/√(1-x²)]+2x+√(1-x²)
=-1/√(1-x²)-2x+x²/√(1-x²)+2x+√(1-x²)
=-(1-x²)/√(1-x²)+√(1-x²)
=-√(1-x²)+√(1-x²)
=0
满足方程。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |