
求函数y=2sin(x+10°)+根号2cos(x+55°)的最值
1个回答
展开全部
y=2sin(x+10°)+根号2cos(x+55°)
=2sin(x+10°)+根号2cos(x+10°+45°)
=2sin(x+10°)+根号2[cos(x+10°)cos45°-sin(x+10°)sin45°]
=2sin(x+10°)+cos(x+10°)-sin(x+10°)
=sin(x+10°)+cos(x+10°)
=根号2sin(x+55°)
所以
函数的最大值
为根号2,最小值为-根号2
=2sin(x+10°)+根号2cos(x+10°+45°)
=2sin(x+10°)+根号2[cos(x+10°)cos45°-sin(x+10°)sin45°]
=2sin(x+10°)+cos(x+10°)-sin(x+10°)
=sin(x+10°)+cos(x+10°)
=根号2sin(x+55°)
所以
函数的最大值
为根号2,最小值为-根号2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询