如图所示,在Rt△ABC中,∠BAC=90°,AC=AB=2,以AB为直径的圆交BC于D,求图形阴影部分的面积
展开全部
连接AD,设圆心为O,连接OD.OD=OA=OB=2/2=1,∠ADB=90°,因Rt△ABC中,
∠BAC=90°,AC=AB,其为等腰RT三角形,
∠ABC=45°,又∠ADB=90°,所以∠DAB=45°。又OA=OD,∠ODA=45°,
所以∠AOD=90°。
所以可证RT三角形ADB为等腰RT三角形,OD⊥AB,且平分AB.
扇形BOD面积=90°/360°*(2/2)²π=π/4
S△BOD=(2/2)²/2=1/2
弓形BD面积=扇形BOD面积-S△BOD=π/4-1/2,弓形AD面积=弓形BD面积=π/4-1/2,
S△ADB=2S△BOD=1/2*2=1
S△ADB+弓形AD面积=1+π/4-1/2=1/2+π/4,
S阴影部分=S△ABC-(S△ADB+弓形AD面积)=2*2/2-(1/2+π/4)=3/2+π/4
∠BAC=90°,AC=AB,其为等腰RT三角形,
∠ABC=45°,又∠ADB=90°,所以∠DAB=45°。又OA=OD,∠ODA=45°,
所以∠AOD=90°。
所以可证RT三角形ADB为等腰RT三角形,OD⊥AB,且平分AB.
扇形BOD面积=90°/360°*(2/2)²π=π/4
S△BOD=(2/2)²/2=1/2
弓形BD面积=扇形BOD面积-S△BOD=π/4-1/2,弓形AD面积=弓形BD面积=π/4-1/2,
S△ADB=2S△BOD=1/2*2=1
S△ADB+弓形AD面积=1+π/4-1/2=1/2+π/4,
S阴影部分=S△ABC-(S△ADB+弓形AD面积)=2*2/2-(1/2+π/4)=3/2+π/4
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询