若P(2,1)为圆x^2+y^2-2x-24=0的弦AB的中点,则直线AB的方程

 我来答
米兰易桥
2020-03-07 · TA获得超过3.7万个赞
知道大有可为答主
回答量:1.2万
采纳率:34%
帮助的人:1018万
展开全部
若ab斜率存在
则设ab斜率是k
y=k(x+2)=kx+2k
所以(kx+2k)²=2x
k²x²+(4k²-2)x+4k²=0
x1+x2=-(4k²-2)/k²
y=kx+2k
所以y1+y2=k(x1+x2)+4k=2/k
中点则x=(x1+x2)/2,y=(y1+y2)/2
所以y/x=(2/k)/[-(4k²-2)/k²]=k/(1-2k²)
y=k(x+2)
所以k=y/(x+2)
代入
y(1-2k²)=kx
即y(x²+4x+4-2y²)=xy(x+2)
x²+4x+4-2y²=x²+2x
y²=x+2
有交点则k²x²+(4k²-2)x+4k²=0有解
判别式=16k^4-16k²+4-16k²>=0
k²<=1/4
-1/2<=k<=1/2
k²=1/4,则x=2
所以k²<=1/4,x>=2
若斜率不存在,则ab是x=-2
此时和抛物线没有交点
综上
y²=x+2,其中x>=2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式