数学大神速度!!求解微积分题目。。。在线等
1个回答
展开全部
9
设u=x^2-y^2,v=e^(x+y)
z'x=(f'u)*(u'x)+(f'v)(v'x)=2xf'u+e^(x+y)f'v
z''xy=2x[(f''uu)(u'y)+(f''uv)(v'y)]+e^(x+y)f'v+e^(x+y)[(f''uv)(u'y)+f''vv(v'y)]
=2x[-2yf''uu+e^(x+y)f''uv]+e^(x+y)f'v+e^(x+y)[-2yf''uv+e^(x+y)f''vv]
=e^(x+y)f'v-4xyf''uu+(2x-2y)e^(x+y)f''uv+e^[2(x+y)] f''vv
10
V=∫∫∫dxdydz=∫∫dxdy ∫(0->3-x-y)dz
=∫∫∑(3-x-y)dxdy 其中∑表示的是圆x^2+y^2=1
=3π
设u=x^2-y^2,v=e^(x+y)
z'x=(f'u)*(u'x)+(f'v)(v'x)=2xf'u+e^(x+y)f'v
z''xy=2x[(f''uu)(u'y)+(f''uv)(v'y)]+e^(x+y)f'v+e^(x+y)[(f''uv)(u'y)+f''vv(v'y)]
=2x[-2yf''uu+e^(x+y)f''uv]+e^(x+y)f'v+e^(x+y)[-2yf''uv+e^(x+y)f''vv]
=e^(x+y)f'v-4xyf''uu+(2x-2y)e^(x+y)f''uv+e^[2(x+y)] f''vv
10
V=∫∫∫dxdydz=∫∫dxdy ∫(0->3-x-y)dz
=∫∫∑(3-x-y)dxdy 其中∑表示的是圆x^2+y^2=1
=3π
追问
第十题二重积分那里是怎么做的?范围是x^2+y^2=1,怎么积分呀??
追答
积分范围是关于x轴,和y轴对称的,所以对x和y的积分都是0
∫∫∑(3-x-y)dxdy =3∫∫dxdy=3π
∫∫dxdy就是积分区域的面积。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询