判断方程x²+y²-6ⅹ+2y=-4=0是否表示圆,如果是,求出圆心的坐标和半径

 我来答
百度网友9c2aacc
2020-05-30 · TA获得超过3541个赞
知道大有可为答主
回答量:6019
采纳率:93%
帮助的人:397万
展开全部
原方程可化为
(x-3)²+(y+1)²=14
是圆的方程,圆心为(3,-1),半径是√14
zhl1968
2020-05-30 · TA获得超过1.4万个赞
知道大有可为答主
回答量:8508
采纳率:94%
帮助的人:1327万
展开全部
分析:将圆的一般方程化成圆的标准方程,即可得到所求圆心坐标.
解:将圆x²+y²−6x+2y=-4化成标准方程,得(x−3)²+(y+1)²=6,
∴圆表示以C(3,−1)为圆心,半径r=√6的圆.
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式