2个回答
展开全部
等三角形练习题(2)
一、填空题:
1、在△ABC中,若AC>BC>AB,且△DEF≌△ABC,则△DEF三边的关系为___<___<___。
2、如图1,AD⊥BC,D为BC的中点,则△ABD≌___,△ABC是___三角形。
3、如图2,若AB=DE,BE=CF,要证△ABF≌△DEC,需补充条件____或____。
4、如图3,已知AB‖CD,AD‖BC,E、F是BD上两点,且BF=DE,则图中共有___对全等三角形,它们分别是_____。
5、如图4,四边形ABCD的对角线相交于O点,且有AB‖DC,AD‖BC,则图中有___对全等三角形。
6、如图5,已知AB=DC,AD=BC,E、F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF=____。
7、如图6,AE=AF,AB=AC,∠A=60°,∠B=24°,则∠BOC=____。
8、在等腰△ABC中,AB=AC=14cm,E为AB中点,DE⊥AB于E,交AC于D,若△BDC的周长为24cm,则底边BC=____。
9、若△ABC≌△A′B′C′,AD和A′D′分别是对应边BC和B′C′的高,则△ABD≌△A′B′D′,理由是______,从而AD=A′D′,这说明全等三角形____相等。
10、在Rt△ABC中,∠C=90°,∠A、∠B的平分线相交于O,则∠AOB=____。
二、选择题:
11、如图7,△ABC≌△BAD,A和B、C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为( )
A、4cm B、5cm C、6cm D、以上都不对
12、下列说法正确的是( )
A、周长相等的两个三角形全等
B、有两边和其中一边的对角对应相等的两个三角形全等
C、面积相等的两个三角形全等
D、有两角和其中一角的对边对应相等的两个三角形全等
13、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是( )
A、∠A B、∠B C、∠C D、∠B或∠C
14、下列条件中,能判定△ABC≌△DEF的是( )
A、AB=DE,BC=ED,∠A=∠D
B、∠A=∠D,∠C=∠F,AC=EF
C、∠B=∠E,∠A=∠D,AC=EF
D、∠B=∠E,∠A=∠D,AB=DE
15、AD是△ABC中BC边上的中线,若AB=4,AC=6,则AD的取值范围是( )
A、AD>1 B、AD<5 C、1<AD<5 D、2<AD<10
16、下列命题错误的是( )
A、两条直角边对应相等的两个直角三角形全等;
B、一条边和一个锐角对应相等的两个直角三角形全等
C、有两边和其中一边的对角(此角为钝角)对应相等的两个三角形全等
D、有两条边对应相等的两个直角三角形全等
17、如图8、△ABC中,AB=AC,BD⊥AC于D,CD⊥AB于E,BD和CE交于点O,AO的延长线交BC于F,则图中全等直角三角形的对数为( )
A、3对 B、4对 C、5对 D、6对
三、解答题与证明题:
18、如图,已知AB‖DC,且AB=CD,BF=DE,
求证:AE‖CF,AF‖CE
19、如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论。
20、如图,已知AB=DC,AC=DB,BE=CE
求证:AE=DE
21、已知如图,E、F在BD上,且AB=CD,BF=DE,AE=CF
求证:AC与BD互相平分
22、如图,∠ABC=90°,AB=BC,D为AC上一点,分别过A、C作BD的垂线,垂足分别为E、F
求证:EF=CF-AE
参考答案:
1、DF,EF,DE;2、△ACD,等腰;3、∠B=∠DEC,AB‖DE;4、三,△ABE≌△CDF,△ADE≌△CBF,△ABD≌△CDB;5、4;6、90°;7、108°;8、10cm;9、AAS,对应边上的高;10、135°。
11、B;12、D;13、A;14、D;15、C;16、D;17、D;
18、∵AB‖DC ∴∠ABE=∠CDF,又DE=BF,∴DE+EF=BF+EF,即BE=DF;
又AB=CD,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,
∴AE‖CF,再通过证△AEF≌△CFE
得∠AFE=∠CEF,∴AF‖CE
19、猜想:CE=ED,CE⊥ED,先证△ACE≌△BED
得CE=ED,∠C=∠DEB,而∠C+∠AEC=90°
∴∠AEC+∠DEB=90°
即CE⊥ED
20、先证△ABC≌△DCB
得∠ABC=∠DCB
再证△ABE≌△DCE,得AE=DE
21、由BF=DF,得BE=DF
∴△ABE≌△CDF,∴∠B=∠D
再证△AOB≌△COD,得OA=OC,OB=OD
即AC、BD互相平分
22、证△ABE≌△BCF,得BE=CF,AE=BF,
∴EF=BE-BF=CF-AE
一、填空题:
1、在△ABC中,若AC>BC>AB,且△DEF≌△ABC,则△DEF三边的关系为___<___<___。
2、如图1,AD⊥BC,D为BC的中点,则△ABD≌___,△ABC是___三角形。
3、如图2,若AB=DE,BE=CF,要证△ABF≌△DEC,需补充条件____或____。
4、如图3,已知AB‖CD,AD‖BC,E、F是BD上两点,且BF=DE,则图中共有___对全等三角形,它们分别是_____。
5、如图4,四边形ABCD的对角线相交于O点,且有AB‖DC,AD‖BC,则图中有___对全等三角形。
6、如图5,已知AB=DC,AD=BC,E、F在DB上两点且BF=DE,若∠AEB=120°,∠ADB=30°,则∠BCF=____。
7、如图6,AE=AF,AB=AC,∠A=60°,∠B=24°,则∠BOC=____。
8、在等腰△ABC中,AB=AC=14cm,E为AB中点,DE⊥AB于E,交AC于D,若△BDC的周长为24cm,则底边BC=____。
9、若△ABC≌△A′B′C′,AD和A′D′分别是对应边BC和B′C′的高,则△ABD≌△A′B′D′,理由是______,从而AD=A′D′,这说明全等三角形____相等。
10、在Rt△ABC中,∠C=90°,∠A、∠B的平分线相交于O,则∠AOB=____。
二、选择题:
11、如图7,△ABC≌△BAD,A和B、C和D分别是对应顶点,若AB=6cm,AC=4cm,BC=5cm,则AD的长为( )
A、4cm B、5cm C、6cm D、以上都不对
12、下列说法正确的是( )
A、周长相等的两个三角形全等
B、有两边和其中一边的对角对应相等的两个三角形全等
C、面积相等的两个三角形全等
D、有两角和其中一角的对边对应相等的两个三角形全等
13、在△ABC中,∠B=∠C,与△ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是( )
A、∠A B、∠B C、∠C D、∠B或∠C
14、下列条件中,能判定△ABC≌△DEF的是( )
A、AB=DE,BC=ED,∠A=∠D
B、∠A=∠D,∠C=∠F,AC=EF
C、∠B=∠E,∠A=∠D,AC=EF
D、∠B=∠E,∠A=∠D,AB=DE
15、AD是△ABC中BC边上的中线,若AB=4,AC=6,则AD的取值范围是( )
A、AD>1 B、AD<5 C、1<AD<5 D、2<AD<10
16、下列命题错误的是( )
A、两条直角边对应相等的两个直角三角形全等;
B、一条边和一个锐角对应相等的两个直角三角形全等
C、有两边和其中一边的对角(此角为钝角)对应相等的两个三角形全等
D、有两条边对应相等的两个直角三角形全等
17、如图8、△ABC中,AB=AC,BD⊥AC于D,CD⊥AB于E,BD和CE交于点O,AO的延长线交BC于F,则图中全等直角三角形的对数为( )
A、3对 B、4对 C、5对 D、6对
三、解答题与证明题:
18、如图,已知AB‖DC,且AB=CD,BF=DE,
求证:AE‖CF,AF‖CE
19、如图,已知AC⊥AB,DB⊥AB,AC=BE,AE=BD,试猜想线段CE与DE的大小与位置关系,并证明你的结论。
20、如图,已知AB=DC,AC=DB,BE=CE
求证:AE=DE
21、已知如图,E、F在BD上,且AB=CD,BF=DE,AE=CF
求证:AC与BD互相平分
22、如图,∠ABC=90°,AB=BC,D为AC上一点,分别过A、C作BD的垂线,垂足分别为E、F
求证:EF=CF-AE
参考答案:
1、DF,EF,DE;2、△ACD,等腰;3、∠B=∠DEC,AB‖DE;4、三,△ABE≌△CDF,△ADE≌△CBF,△ABD≌△CDB;5、4;6、90°;7、108°;8、10cm;9、AAS,对应边上的高;10、135°。
11、B;12、D;13、A;14、D;15、C;16、D;17、D;
18、∵AB‖DC ∴∠ABE=∠CDF,又DE=BF,∴DE+EF=BF+EF,即BE=DF;
又AB=CD,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,
∴AE‖CF,再通过证△AEF≌△CFE
得∠AFE=∠CEF,∴AF‖CE
19、猜想:CE=ED,CE⊥ED,先证△ACE≌△BED
得CE=ED,∠C=∠DEB,而∠C+∠AEC=90°
∴∠AEC+∠DEB=90°
即CE⊥ED
20、先证△ABC≌△DCB
得∠ABC=∠DCB
再证△ABE≌△DCE,得AE=DE
21、由BF=DF,得BE=DF
∴△ABE≌△CDF,∴∠B=∠D
再证△AOB≌△COD,得OA=OC,OB=OD
即AC、BD互相平分
22、证△ABE≌△BCF,得BE=CF,AE=BF,
∴EF=BE-BF=CF-AE
2010-08-18
展开全部
八年级上册数学期末复习试卷
(时间100分钟,满分100分)
一、选择题(每题3分,共30分)
1.4的算术平方根是 ( )
A. 2 B.–2 C. D. ±2
2. 下列各数: ,- , π, 0.020020002……, 6.57896,是无理数的是( )
A. 2个 B. 3个 C. 4个 D. 5个
3. 将直角三角形三边扩大同样的倍数,得到的三角形是 ( )
A. 锐角三角形 B. 钝角三角形 C. 直角三角形 D. 任意三角形
4. 一个正多边形的每个内角都为120°, 则它是 ( )
A. 正方形 B. 正五边形 C. 正六边形 D. 正八边形
5. 能够单独密铺的正多边形是( )
A. 正五边形 B. 正六边形 C. 正七边形 D. 正八边形
6. 下列图片中,哪些是由图片(1)分别经过平移和旋转得到的 ( )
(1) (2) (3) (4)
A. (3)和(4) B. (2)和(3) C. (2)和(4) D. (4)和(3)
7.随着生活水平的不断提高,汽车越来越普及,在下面的汽车标志图中,属于中心对称的图形是 ( )
A B C D
8.下列是食品营养成份表的一部分(每100克食品中可食部分营养成份的含量)在表中提供的碳水化合物的克数所组成的数据中,中位数和众数分别是 ( )
蔬菜种类 绿豆芽 白菜 油菜 卷心菜 菠菜 韭菜 胡萝卜
碳水化合物 4 3 4 4 2 4 7
A. 4, 3 B. 4, 4 C. 4, 7 D. 2, 4
9. 已知正比例函数y=-kx和一次函数y=kx-2 (x为自变量)它们在同一坐标系内的图象
大致是( )
A B C D
10. 若△ ABC中,AB=13,AC=15,高AD=12,则BC的长是 ( )
A. 14 B.4,14 C. 4 D. 5,14
二、填空题 (每题3分,共30分)
11.已知7, 4, 3, a, 5这五个数的平均数是5, 则a= 。
12.P(3,–4 )关于原点对称的点是 。
13.已知一次函数y=kx+b的图象经过点(0,–5),且与直线y= x的图象平行,则一次函数表
达式为 。
14.已知 +|2x–y|= 0,那么x–y = 。
15.如图,小鱼的鱼身ABCD为菱形,已知鱼身长BD=8,AB=5,以BD所在直线为X轴,以 AC所在的直线为y轴,建立直角坐标系,则点C的坐标为 。
(第15题) (第16题) (第20题)
16.如图,已知等腰梯形ABCD,AD‖BC, AD=5cm,BC=11cm,高DE=4cm,则梯
形的周长为 。
17. 编写一个二元一次方程组, 使方程组的解为 ,此方程组为 。
18.直线y=2x+8与坐标轴围成的三角形的面积为 。
19.根据下图给出的信息,则每件T恤价格和每瓶矿泉水的价格分别为 元。
共计44元 共计26元
20.如图折叠一个矩形纸片,沿着AE折叠后,点D恰好落在BC边的一点F上,已知
AB=8cm,BC=10cm,则S△EFC= 。
三 、看谁写得既全面又整洁
21.(6分)将左图绕O点逆时针旋转90°,将右图向右平移5格.
22.(5分)计算: -2 +( -1)2
23.(8分)某次歌唱比赛,三名选手的成绩如下:
测试项目 测试成绩
甲 乙 丙
创新 72 85 67
唱功 62 77 76
综合知识 88 45 67
(1)若按三项的平均值取第一名,谁是第一名?(4分)
(2)若三项测试得分按3:6:1的比例确定个人的测试成绩,谁是第一名?(4分)
24.(6分)如图,已知在平行四边形ABCD中,E、F在对角线AC上,并且AE=CF,则四边形EBFD是平行四边形吗?试说明理由。
25.(7分)某公园的门票价格如下表:
购票人数 1—50人 51—100人 100人以上
每人门票数 13元 11元 9元
育才中学初二(1)、二(2)两个班的学生共104人去公园游玩,其中二(1)班的人数不到50人,二(2)班的人数有50多人,经估算,如果两个班都以班为单位分别购票,则一共应付1240元,如果两班联合起来,作为一个团体购票,则可节省不少钱,你能否求出两个班各有多少名学生?联合起来购票能省多少钱?
26.(8分)如图,l1表示某商场一天的手提电脑销售额与销售量的关系,l2表示该商场一天的销售成本与手提电脑销售量的关系:
(1)当x=2时,销售额= ____ 万元,销售成本= _____ 万元,利润(收入-成本)= 万元.(3分)
(2)一天销售 台时,销售额等于销售成本。(1分)
(3)l1对应的函数表达式是 。(2分)
(4)写出利润与销售额之间的函数表达式。(2分)
参考答案
一、(每题3分,共30分)。
1、A 2、B 3、C 4、C 5、B
6、A 7、D 8、B 9、A 10、B
二、(每题3分,共30分)。
11、6; 12、(-3,4); 13、y= x-5;
14、-3; 15、(0,-3); 16、26cm;
17、 (答案不唯一);
18、16; 19、20元和2元; 20、6 cm2
三、(共40分)。
21、(6分)每图3分。
22、计算(5分)。
解:原式= ×2 -2×3 +5-2 +1 (3分)
= -6 -2 +6 (4分)
=6-7 (5分)
23、(8分)
解:(1)甲的平均成绩为 (72+62+88)= 74分 (1分)
乙的平均成绩为 (85+77+45)= 69分 (2分)
丙的平均成绩为 (67+76+67)= 70分 (3分)
因此甲将得第一名。 (4分)
(2)甲的平均成绩为 =67.6分 (5分)
乙的平均成绩为 = 76.2分 (6分)
丙的平均成绩为 = 72.4分 (7分)
因此乙将得第一名。 (8分)
24、(6分)
解:四边形EBFD是平行四边形 (1分)
连结BD交AC于O点 (2分)
由四边形ABCD是平行四边形
∴OA=OC,OB=OD (3分)
又∵AE=CF
∴OA—AE=OC—CF (4分)
即 OE=OF (5分)
∴ 四边形EBFD是平行四边形 (6分)
25、(7分)
解:设二(1)班有x人,二(2)班有y人,则 (1分)
(3分)
解之得 (5分)
节省钱数为1240—104×9=304元。 (6分)
答:二(1)班有48人,二(2)班有56人 (7分)
节省钱数为304元。
26、(7分)
解:(1)2;3;-1 (3分)
(2)4 (4分)
(3)y=x (6分)
(4)y= x-2. (8分)
(时间100分钟,满分100分)
一、选择题(每题3分,共30分)
1.4的算术平方根是 ( )
A. 2 B.–2 C. D. ±2
2. 下列各数: ,- , π, 0.020020002……, 6.57896,是无理数的是( )
A. 2个 B. 3个 C. 4个 D. 5个
3. 将直角三角形三边扩大同样的倍数,得到的三角形是 ( )
A. 锐角三角形 B. 钝角三角形 C. 直角三角形 D. 任意三角形
4. 一个正多边形的每个内角都为120°, 则它是 ( )
A. 正方形 B. 正五边形 C. 正六边形 D. 正八边形
5. 能够单独密铺的正多边形是( )
A. 正五边形 B. 正六边形 C. 正七边形 D. 正八边形
6. 下列图片中,哪些是由图片(1)分别经过平移和旋转得到的 ( )
(1) (2) (3) (4)
A. (3)和(4) B. (2)和(3) C. (2)和(4) D. (4)和(3)
7.随着生活水平的不断提高,汽车越来越普及,在下面的汽车标志图中,属于中心对称的图形是 ( )
A B C D
8.下列是食品营养成份表的一部分(每100克食品中可食部分营养成份的含量)在表中提供的碳水化合物的克数所组成的数据中,中位数和众数分别是 ( )
蔬菜种类 绿豆芽 白菜 油菜 卷心菜 菠菜 韭菜 胡萝卜
碳水化合物 4 3 4 4 2 4 7
A. 4, 3 B. 4, 4 C. 4, 7 D. 2, 4
9. 已知正比例函数y=-kx和一次函数y=kx-2 (x为自变量)它们在同一坐标系内的图象
大致是( )
A B C D
10. 若△ ABC中,AB=13,AC=15,高AD=12,则BC的长是 ( )
A. 14 B.4,14 C. 4 D. 5,14
二、填空题 (每题3分,共30分)
11.已知7, 4, 3, a, 5这五个数的平均数是5, 则a= 。
12.P(3,–4 )关于原点对称的点是 。
13.已知一次函数y=kx+b的图象经过点(0,–5),且与直线y= x的图象平行,则一次函数表
达式为 。
14.已知 +|2x–y|= 0,那么x–y = 。
15.如图,小鱼的鱼身ABCD为菱形,已知鱼身长BD=8,AB=5,以BD所在直线为X轴,以 AC所在的直线为y轴,建立直角坐标系,则点C的坐标为 。
(第15题) (第16题) (第20题)
16.如图,已知等腰梯形ABCD,AD‖BC, AD=5cm,BC=11cm,高DE=4cm,则梯
形的周长为 。
17. 编写一个二元一次方程组, 使方程组的解为 ,此方程组为 。
18.直线y=2x+8与坐标轴围成的三角形的面积为 。
19.根据下图给出的信息,则每件T恤价格和每瓶矿泉水的价格分别为 元。
共计44元 共计26元
20.如图折叠一个矩形纸片,沿着AE折叠后,点D恰好落在BC边的一点F上,已知
AB=8cm,BC=10cm,则S△EFC= 。
三 、看谁写得既全面又整洁
21.(6分)将左图绕O点逆时针旋转90°,将右图向右平移5格.
22.(5分)计算: -2 +( -1)2
23.(8分)某次歌唱比赛,三名选手的成绩如下:
测试项目 测试成绩
甲 乙 丙
创新 72 85 67
唱功 62 77 76
综合知识 88 45 67
(1)若按三项的平均值取第一名,谁是第一名?(4分)
(2)若三项测试得分按3:6:1的比例确定个人的测试成绩,谁是第一名?(4分)
24.(6分)如图,已知在平行四边形ABCD中,E、F在对角线AC上,并且AE=CF,则四边形EBFD是平行四边形吗?试说明理由。
25.(7分)某公园的门票价格如下表:
购票人数 1—50人 51—100人 100人以上
每人门票数 13元 11元 9元
育才中学初二(1)、二(2)两个班的学生共104人去公园游玩,其中二(1)班的人数不到50人,二(2)班的人数有50多人,经估算,如果两个班都以班为单位分别购票,则一共应付1240元,如果两班联合起来,作为一个团体购票,则可节省不少钱,你能否求出两个班各有多少名学生?联合起来购票能省多少钱?
26.(8分)如图,l1表示某商场一天的手提电脑销售额与销售量的关系,l2表示该商场一天的销售成本与手提电脑销售量的关系:
(1)当x=2时,销售额= ____ 万元,销售成本= _____ 万元,利润(收入-成本)= 万元.(3分)
(2)一天销售 台时,销售额等于销售成本。(1分)
(3)l1对应的函数表达式是 。(2分)
(4)写出利润与销售额之间的函数表达式。(2分)
参考答案
一、(每题3分,共30分)。
1、A 2、B 3、C 4、C 5、B
6、A 7、D 8、B 9、A 10、B
二、(每题3分,共30分)。
11、6; 12、(-3,4); 13、y= x-5;
14、-3; 15、(0,-3); 16、26cm;
17、 (答案不唯一);
18、16; 19、20元和2元; 20、6 cm2
三、(共40分)。
21、(6分)每图3分。
22、计算(5分)。
解:原式= ×2 -2×3 +5-2 +1 (3分)
= -6 -2 +6 (4分)
=6-7 (5分)
23、(8分)
解:(1)甲的平均成绩为 (72+62+88)= 74分 (1分)
乙的平均成绩为 (85+77+45)= 69分 (2分)
丙的平均成绩为 (67+76+67)= 70分 (3分)
因此甲将得第一名。 (4分)
(2)甲的平均成绩为 =67.6分 (5分)
乙的平均成绩为 = 76.2分 (6分)
丙的平均成绩为 = 72.4分 (7分)
因此乙将得第一名。 (8分)
24、(6分)
解:四边形EBFD是平行四边形 (1分)
连结BD交AC于O点 (2分)
由四边形ABCD是平行四边形
∴OA=OC,OB=OD (3分)
又∵AE=CF
∴OA—AE=OC—CF (4分)
即 OE=OF (5分)
∴ 四边形EBFD是平行四边形 (6分)
25、(7分)
解:设二(1)班有x人,二(2)班有y人,则 (1分)
(3分)
解之得 (5分)
节省钱数为1240—104×9=304元。 (6分)
答:二(1)班有48人,二(2)班有56人 (7分)
节省钱数为304元。
26、(7分)
解:(1)2;3;-1 (3分)
(2)4 (4分)
(3)y=x (6分)
(4)y= x-2. (8分)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询