1~1000能被2或3或5整除的数有几个
1——1000中能被2或3或5整除的数有几个?十万火急!2012年9月14日之前此题作废勿答!更新:2012年9月14日之后此题作废勿答!...
1——1000中能被2或3或5整除的数有几个?
十万火急!2012年9月14日之前此题作废勿答!
更新:2012年9月14日之后此题作废勿答! 展开
十万火急!2012年9月14日之前此题作废勿答!
更新:2012年9月14日之后此题作废勿答! 展开
1个回答
展开全部
被2整除,即 两个两个地数有多少组,1000\2=500 (\表示除后取整数部分)
被3整除,即 三个三个地数有多少组,1000\3=333
被5整除,即 五个五个地数有多少组,1000\5=200
被2和3同时整除,即 六个六个地数,1000\6=166
被2和5同时整除,即 十个十个地数,1000\10=100
被3和5同时整除,即 十五个十五个的数,1000\15=66
被2、3和5同时整除,即三十个三十个地数,1000\30=33
以上条件中不重复的数有 500+333+200-166-100-66+33=734
(里面已重复减掉了2、3、5同时整除的数,所以最后还是要加上33)
被3整除,即 三个三个地数有多少组,1000\3=333
被5整除,即 五个五个地数有多少组,1000\5=200
被2和3同时整除,即 六个六个地数,1000\6=166
被2和5同时整除,即 十个十个地数,1000\10=100
被3和5同时整除,即 十五个十五个的数,1000\15=66
被2、3和5同时整除,即三十个三十个地数,1000\30=33
以上条件中不重复的数有 500+333+200-166-100-66+33=734
(里面已重复减掉了2、3、5同时整除的数,所以最后还是要加上33)
科哲生化
2024-08-26 广告
2024-08-26 广告
你说的是饮用水标准吗?引起食品不安全的微生物因素主要是其中的致病菌,产毒菌以及腐败菌等,因此菌落总数这一指标并不能恰当的反映应用水的安全情况,而应当对水中的一些具体有害微生物进行限制;取消这一指标,也是与国际标准接轨;另外对这一指标加以控制...
点击进入详情页
本回答由科哲生化提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询